BAYESIAN INFERENCE FOR SOLVING A CLASS OF HEAT CONDUCTION PROBLEMS

被引:4
|
作者
Lai, Jun-Feng [1 ]
Yan, Zai-Zai [1 ]
He, Ji-Huan [2 ,3 ]
机构
[1] Inner Mongolia Univ Technol, Sci Coll, Hohhot, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Henan, Peoples R China
[3] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou, Peoples R China
来源
THERMAL SCIENCE | 2021年 / 25卷 / 03期
基金
中国国家自然科学基金;
关键词
Bayesian inference; heat conduction problem; Markov chain Monte-Carlo; STRONG-CONVERGENCE; DIFFUSION-MODELS; SCHEME;
D O I
10.2298/TSCI191226098L
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper considers a heat conduction problem of a common continuum-type stochastic mathematical model in an engineering field. The approximate solution is calculated with the Markov chain Monte-Carlo algorithm for the heat conduction problem. Three examples are given to illustrate the solution process of the method.
引用
收藏
页码:2135 / 2142
页数:8
相关论文
共 50 条
  • [41] Identification of destruction in metallurgical equipment by solving the inverse heat conduction problems
    Matsevity, Y
    Timchenko, V
    Kostikov, A
    CHT'01: ADVANCES IN COMPUTATIONAL HEAT TRANSFER II, VOLS 1 AND 2, PROCEEDINGS, 2001, : 535 - 542
  • [42] A new space marching method for solving inverse heat conduction problems
    Taler, J
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 1999, 64 (11): : 296 - 306
  • [43] ON A TIME STEP CHOICE IN SOLVING INVERSE HEAT-CONDUCTION PROBLEMS
    GRYSA, K
    KAMINSKI, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T368 - T370
  • [45] Solving inverse geometry heat conduction problems by postprocessing steady thermograms
    Higuera, M.
    Perales, J. M.
    Rapun, M. -L.
    Vega, J. M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 143
  • [46] A FINITE ELEMENT EIGENVALUE METHOD FOR SOLVING TRANSIENT HEAT CONDUCTION PROBLEMS
    Zhong, Jiakang
    Chow, Louis C.
    Chang, Won Soon
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1992, 2 (01) : 243 - 259
  • [47] ADDENDUM TO EIGENVALUE METHOD FOR SOLVING TRANSIENT HEAT-CONDUCTION PROBLEMS
    LANDRY, DW
    KAPLAN, B
    NUMERICAL HEAT TRANSFER, 1986, 9 (02): : 247 - 249
  • [48] Numerical method for solving heat conduction problems of heterogeneous and anisotropic materials
    Xi'an Jiautong University, Xi'an 710049, China
    Shiyou Daxue Xuebao, 6 (59-61):
  • [49] Homotopy method of fundamental solutions for solving nonlinear heat conduction problems
    Chang, Jen-Yi
    Tsai, Chia-Cheng
    Young, D. L.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 108 : 179 - 191
  • [50] The method of fundamental solution for solving multidimensional inverse heat conduction problems
    Hon, YC
    Wei, T
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2005, 7 (02): : 119 - 132