BAYESIAN INFERENCE FOR SOLVING A CLASS OF HEAT CONDUCTION PROBLEMS

被引:4
|
作者
Lai, Jun-Feng [1 ]
Yan, Zai-Zai [1 ]
He, Ji-Huan [2 ,3 ]
机构
[1] Inner Mongolia Univ Technol, Sci Coll, Hohhot, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Henan, Peoples R China
[3] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou, Peoples R China
来源
THERMAL SCIENCE | 2021年 / 25卷 / 03期
基金
中国国家自然科学基金;
关键词
Bayesian inference; heat conduction problem; Markov chain Monte-Carlo; STRONG-CONVERGENCE; DIFFUSION-MODELS; SCHEME;
D O I
10.2298/TSCI191226098L
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper considers a heat conduction problem of a common continuum-type stochastic mathematical model in an engineering field. The approximate solution is calculated with the Markov chain Monte-Carlo algorithm for the heat conduction problem. Three examples are given to illustrate the solution process of the method.
引用
收藏
页码:2135 / 2142
页数:8
相关论文
共 50 条
  • [31] A semi-numerical method for solving inverse heat conduction problems
    Taler, J
    HEAT AND MASS TRANSFER, 1996, 31 (03): : 105 - 111
  • [32] A MONTE-CARLO METHOD OF SOLVING HEAT-CONDUCTION PROBLEMS
    FRALEY, SK
    HOFFMAN, TJ
    STEVENS, PN
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1980, 102 (01): : 121 - 125
  • [33] Approximate Methods for Solving Problems of Nonstationary Heat Conduction in Inhomogeneous Media
    T. V. Vasil'eva
    Yu. I. Dudarev
    A. P. Kashin
    M. Z. Maksimov
    Journal of Engineering Physics and Thermophysics, 2000, 73 (6) : 1317 - 1322
  • [34] Fuzzy finite element method for solving uncertain heat conduction problems
    Chakraverty, S.
    Nayak, S.
    COUPLED SYSTEMS MECHANICS, 2012, 1 (04): : 345 - 360
  • [35] ONE VARIATION METHOD FOR SOLVING PROBLEMS OF NONSTATIONARY HEAT-CONDUCTION
    SHEVCHENKO, JN
    PROKHORENKO, IV
    SAVCHENKO, VG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (09): : 816 - 821
  • [36] Approximate methods for solving problems of nonstationary heat conduction in inhomogeneous media
    Vasil'eva, T.V.
    Dudarev, Yu.I.
    Kashin, A.P.
    Maksimov, M.Z.
    Inzhenerno-Fizicheskii Zhurnal, 2000, 73 (06): : 1358 - 1363
  • [37] A monte carlo method for solving heat conduction problems with complicated geometry
    Shentu, Jun
    Yun, Sunghwan
    Cho, Nam Zin
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2007, 39 (03) : 207 - 214
  • [38] Application of improved genetic algorithm to solving inverse heat conduction problems
    Li, Shou-Ju
    Liu, Ying-Xi
    Gongcheng Lixue/Engineering Mechanics, 2005, 22 (03): : 72 - 75
  • [39] A BOUNDARY RESIDUAL METHOD WITH HEAT POLYNOMIALS FOR SOLVING UNSTEADY HEAT-CONDUCTION PROBLEMS
    YANO, H
    FUKUTANI, S
    KIEDA, A
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1983, 316 (04): : 291 - 298
  • [40] A heat-flux based "building block" approach for solving heat conduction problems
    de Monte, Filippo
    Beck, James V.
    Amos, Donald E.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (13-14) : 2789 - 2800