An insight into diagnosis of depression using machine learning techniques: a systematic review

被引:34
|
作者
Bhadra, Sweta [1 ]
Kumar, Chandan Jyoti [1 ]
机构
[1] Cotton Univ, Dept CS & IT, Gauhati 781001, India
关键词
Depression; machine learning; neuroimaging; multimedia data; mental disorder; STATE FUNCTIONAL CONNECTIVITY; UNIPOLAR DEPRESSION; PATTERN-CLASSIFICATION; FEATURE-SELECTION; MAJOR DEPRESSION; DISORDER; BIPOLAR; PREDICTION; FMRI; IDENTIFICATION;
D O I
10.1080/03007995.2022.2038487
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background In this modern era, depression is one of the most prevalent mental disorders from which millions of individuals are affected today. The symptoms of depression are heterogeneous and often coincide with other disorders such as bipolar disorder, Parkinson's, schizophrenia, etc. It is a serious mental illness that may lead to other health problems if left untreated. Currently, identifying individuals with depression is totally based on the expertise of the clinician's experience. In order to assist clinicians in identifying the characteristics and classifying depressed people, different types of data modalities and machine learning techniques have been incorporated by researchers in this field. This study aims to find the answers to some important questions related to the trend of publications, data modality, machine learning models, dataset usage, pre-processing techniques and feature extraction and selection techniques that are prevalent and guide the direction of future research on depression diagnosis. Methods This systematic review was conducted using a broad range of articles from two major databases: IEEE Xplore and PubMed. Studies ranging from the years 2011 to April 2021 were retrieved from the databases resulting in a total of 590 articles (53 articles from the IEEE Xplore database and 537 articles from the PubMed database). Out of those, the articles which satisfied the defined inclusion criteria were investigated for further analysis. Results A total of 135 articles were identified and analysed for this review. High growth in the number of publications has been observed in recent years. Furthermore, significant diversity in the use of data modalities and machine learning classifiers has also been noted in this study. fMRI data with an SVM classifier was found to be the most popular choice among researchers. In most of the studies, data scarcity and small sample size, particularly for neuroimaging data are major concerns. The use of identical data pre-processing tools for similar data modalities can be seen. This study also provides statistical analysis of the current framework with respect to the modality, machine learning classifier, sample size and accuracy by applying one-way ANOVA and the Tukey - Kramer test. Conclusion The results indicate that an effective fusion of machine learning techniques with a potential data modality has a promising future for assisting clinicians in automatic depression diagnosis.
引用
收藏
页码:749 / 771
页数:23
相关论文
共 50 条
  • [41] A Systematic Review of Machine Learning Techniques for GNSS Use Cases
    Siemuri, Akpojoto
    Selvan, Kannan
    Kuusniemi, Heidi
    Valisuo, Petri
    Elmusrati, Mohammed S.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (06) : 5043 - 5077
  • [42] Predicting Blocking Bugs with Machine Learning Techniques: A Systematic Review
    Brown, Selasie Aformaley
    Weyori, Benjamin Asubam
    Adekoya, Adebayo Felix
    Kudjo, Patrick Kwaku
    Mensah, Solomon
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 674 - 683
  • [43] Machine Learning Techniques for Knowledge Tracing: A Systematic Literature Review
    Ramirez Luelmo, Sergio Ivan
    El Mawas, Nour
    Heutte, Jean
    CSEDU: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 1, 2021, : 60 - 70
  • [44] Machine learning techniques in bankruptcy prediction: A systematic literature review
    Dasilas, Apostolos
    Rigani, Anna
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [45] A systematic review of machine learning techniques for software fault prediction
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2015, 27 : 504 - 518
  • [46] A systematic review of Machine learning techniques for Heart disease prediction
    Udhan, Shivganga
    Patil, Bankat
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (02): : 229 - 239
  • [47] Applications and Techniques of Machine Learning in Cancer Classification: A Systematic Review
    Abrar Yaqoob
    Rabia Musheer Aziz
    Navneet Kumar verma
    Human-Centric Intelligent Systems, 2023, 3 (4): : 588 - 615
  • [48] Using Machine Learning for Pharmacovigilance: A Systematic Review
    Pilipiec, Patrick
    Liwicki, Marcus
    Bota, Andras
    PHARMACEUTICS, 2022, 14 (02)
  • [49] Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review
    Kabade, Varad
    Hooda, Ritika
    Raj, Chahat
    Awan, Zainab
    Young, Allison S.
    Welgampola, Miriam S.
    Prasad, Mukesh
    SENSORS, 2021, 21 (22)
  • [50] A Review of Current Machine Learning Techniques Used in Manufacturing Diagnosis
    Ademujimi, Toyosi Toriola
    Brundage, Michael P.
    Prabhu, Vittaldas V.
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: THE PATH TO INTELLIGENT, COLLABORATIVE AND SUSTAINABLE MANUFACTURING, 2017, 513 : 407 - 415