An insight into diagnosis of depression using machine learning techniques: a systematic review

被引:34
|
作者
Bhadra, Sweta [1 ]
Kumar, Chandan Jyoti [1 ]
机构
[1] Cotton Univ, Dept CS & IT, Gauhati 781001, India
关键词
Depression; machine learning; neuroimaging; multimedia data; mental disorder; STATE FUNCTIONAL CONNECTIVITY; UNIPOLAR DEPRESSION; PATTERN-CLASSIFICATION; FEATURE-SELECTION; MAJOR DEPRESSION; DISORDER; BIPOLAR; PREDICTION; FMRI; IDENTIFICATION;
D O I
10.1080/03007995.2022.2038487
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background In this modern era, depression is one of the most prevalent mental disorders from which millions of individuals are affected today. The symptoms of depression are heterogeneous and often coincide with other disorders such as bipolar disorder, Parkinson's, schizophrenia, etc. It is a serious mental illness that may lead to other health problems if left untreated. Currently, identifying individuals with depression is totally based on the expertise of the clinician's experience. In order to assist clinicians in identifying the characteristics and classifying depressed people, different types of data modalities and machine learning techniques have been incorporated by researchers in this field. This study aims to find the answers to some important questions related to the trend of publications, data modality, machine learning models, dataset usage, pre-processing techniques and feature extraction and selection techniques that are prevalent and guide the direction of future research on depression diagnosis. Methods This systematic review was conducted using a broad range of articles from two major databases: IEEE Xplore and PubMed. Studies ranging from the years 2011 to April 2021 were retrieved from the databases resulting in a total of 590 articles (53 articles from the IEEE Xplore database and 537 articles from the PubMed database). Out of those, the articles which satisfied the defined inclusion criteria were investigated for further analysis. Results A total of 135 articles were identified and analysed for this review. High growth in the number of publications has been observed in recent years. Furthermore, significant diversity in the use of data modalities and machine learning classifiers has also been noted in this study. fMRI data with an SVM classifier was found to be the most popular choice among researchers. In most of the studies, data scarcity and small sample size, particularly for neuroimaging data are major concerns. The use of identical data pre-processing tools for similar data modalities can be seen. This study also provides statistical analysis of the current framework with respect to the modality, machine learning classifier, sample size and accuracy by applying one-way ANOVA and the Tukey - Kramer test. Conclusion The results indicate that an effective fusion of machine learning techniques with a potential data modality has a promising future for assisting clinicians in automatic depression diagnosis.
引用
收藏
页码:749 / 771
页数:23
相关论文
共 50 条
  • [21] Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review
    Debelee, Taye Girma
    DIAGNOSTICS, 2023, 13 (19)
  • [22] Predicting Breast Cancer Recurrence Using Machine Learning Techniques: A Systematic Review
    Abreu, Pedro Henriques
    Santos, Miriam Seoane
    Abreu, Miguel Henriques
    Andrade, Bruno
    Silva, Daniel Castro
    ACM COMPUTING SURVEYS, 2016, 49 (03)
  • [23] A systematic review of stock market prediction using machine learning and statistical techniques
    Kumar, Deepak
    Sarangi, Pradeepta Kumar
    Verma, Rajit
    MATERIALS TODAY-PROCEEDINGS, 2022, 49 : 3187 - 3191
  • [24] A Systematic Literature Review of Student' Performance Prediction Using Machine Learning Techniques
    Albreiki, Balqis
    Zaki, Nazar
    Alashwal, Hany
    EDUCATION SCIENCES, 2021, 11 (09):
  • [25] A systematic review of fuzzing based on machine learning techniques
    Wang, Yan
    Jia, Peng
    Liu, Luping
    Huang, Cheng
    Liu, Zhonglin
    PLOS ONE, 2020, 15 (08):
  • [26] Machine learning techniques in chemostratigraphy: A systematic literature review
    Garcia, Luciano Garim
    Ramos, Gabriel de Oliveira
    Teixeira, Jose Manuel Marques
    da Silveira, Ariane Santos
    Cardoso Jr, Marcio
    de Oliveira, Rita Gausina
    Rigo, Sandro Jose
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
  • [27] Machine Learning Techniques in Keratoconus Classification: A Systematic Review
    Mustapha, Aatila
    Mohamed, Lachgar
    Hamid, Hrimech
    Ali, Kartit
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 648 - 657
  • [28] A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques
    Ahmed, S. Nafees
    Prakasam, P.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2023, 183 : 1 - 16
  • [29] Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review
    Painuli, Deepak
    Bhardwaj, Suyash
    Kose, Utku
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [30] A Systematic Review of Applications of Machine Learning and Other Soft Computing Techniques for the Diagnosis of Tropical Diseases
    Attai, Kingsley
    Amannejad, Yasaman
    Pour, Maryam Vahdat
    Obot, Okure
    Uzoka, Faith-Michael
    TROPICAL MEDICINE AND INFECTIOUS DISEASE, 2022, 7 (12)