Deep learning-based pseudo-mass spectrometry imaging analysis for precision medicine

被引:6
|
作者
Shen, Xiaotao [1 ]
Shao, Wei [1 ]
Wang, Chuchu [1 ]
Liang, Liang [1 ]
Chen, Songjie [1 ]
Zhang, Sai [1 ]
Rusu, Mirabela [1 ]
Snyder, Michael P. [1 ]
机构
[1] Stanford Sch Med, Stanford, CA 94305 USA
关键词
deep-learning; pseudo-mass spectrometry imaging; diagnosis; METABOLOMICS; ANNOTATION;
D O I
10.1093/bib/bbac331
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics provides systematic profiling of metabolic. Yet, its applications in precision medicine (disease diagnosis) have been limited by several challenges, including metabolite identification, information loss and low reproducibility. Here, we present the deep-learning-based Pseudo-Mass Spectrometry Imaging (deeppseudoMSI) project (https://www.deeppseudomsi.org/), which converts LC-MS raw data to pseudo-MS images and then processes them by deep learning for precision medicine, such as disease diagnosis. Extensive tests based on real data demonstrated the superiority of deepPseudoMSI over traditional approaches and the capacity of our method to achieve an accurate individualized diagnosis. Our framework lays the foundation for future metabolic-based precision medicine.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Complementing machine learning-based structure predictions with native mass spectrometry
    Allison, Timothy M.
    Degiacomi, Matteo T.
    Marklund, Erik G.
    Jovine, Luca
    Elofsson, Arne
    Benesch, Justin L. P.
    Landreh, Michael
    PROTEIN SCIENCE, 2022, 31 (06)
  • [42] Precision medicine in oncology: role and prospects of mass spectrometry
    Khmelevskaya, E. S.
    Perina, E. A.
    Buyko, E. E.
    Ufandeev, A. A.
    Kaidash, O. A.
    Ivanov, V. V.
    Baikov, A. N.
    Parochkina, E. V.
    Udut, E. V.
    BYULLETEN SIBIRSKOY MEDITSINY, 2024, 23 (02):
  • [43] Enhancing diagnostic precision in liver lesion analysis using a deep learning-based system: opportunities and challenges
    Lee, Jeong Min
    Bae, Jae Seok
    NATURE REVIEWS CLINICAL ONCOLOGY, 2024, 21 (07) : 485 - 486
  • [44] A Deep Learning-Based Intelligent Medicine Recognition System for Chronic Patients
    Chang, Wan-Jung
    Chen, Liang-Bi
    Hsu, Chia-Hao
    Lin, Cheng-Pei
    Yang, Tzu-Chin
    IEEE ACCESS, 2019, 7 : 44441 - 44458
  • [45] Deep learning: from chemoinformatics to precision medicine
    Kim I.-W.
    Oh J.M.
    Journal of Pharmaceutical Investigation, 2017, 47 (4) : 317 - 323
  • [46] Affordable Deep learning-based Leaf Disease Detection and Localization for Precision Agriculture
    Tej, Balkis
    Bouaafia, Soulef
    Ben Ahmed, Olfa
    Hajjaji, Mohamed Ali
    Mtibaa, Abdellatif
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 564 - 569
  • [47] Deep Learning-Based Cow Tail Detection and Tracking for Precision Livestock Farming
    Huang, Xiaoping
    Hu, Zelin
    Qiao, Yongliang
    Sukkarieh, Salah
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (03) : 1213 - 1221
  • [48] Deep learning in precision medicine and focus on glioma
    Liu, Yihao
    Wu, Minghua
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2023, 8 (05)
  • [49] Deep learning-based automated disease detection and classification model for precision agriculture
    Pavithra, A.
    Kalpana, G.
    Vigneswaran, T.
    SOFT COMPUTING, 2023, 28 (Suppl 2) : 463 - 463
  • [50] Deep Learning-Based Model for Detection of Brinjal Weed in the Era of Precision Agriculture
    Patel, Jigna
    Ruparelia, Anand
    Tanwar, Sudeep
    Alqahtani, Fayez
    Tolba, Amr
    Sharma, Ravi
    Raboaca, Maria Simona
    Neagu, Bogdan Constantin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (01): : 1281 - 1301