Deep learning-based pseudo-mass spectrometry imaging analysis for precision medicine

被引:6
|
作者
Shen, Xiaotao [1 ]
Shao, Wei [1 ]
Wang, Chuchu [1 ]
Liang, Liang [1 ]
Chen, Songjie [1 ]
Zhang, Sai [1 ]
Rusu, Mirabela [1 ]
Snyder, Michael P. [1 ]
机构
[1] Stanford Sch Med, Stanford, CA 94305 USA
关键词
deep-learning; pseudo-mass spectrometry imaging; diagnosis; METABOLOMICS; ANNOTATION;
D O I
10.1093/bib/bbac331
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics provides systematic profiling of metabolic. Yet, its applications in precision medicine (disease diagnosis) have been limited by several challenges, including metabolite identification, information loss and low reproducibility. Here, we present the deep-learning-based Pseudo-Mass Spectrometry Imaging (deeppseudoMSI) project (https://www.deeppseudomsi.org/), which converts LC-MS raw data to pseudo-MS images and then processes them by deep learning for precision medicine, such as disease diagnosis. Extensive tests based on real data demonstrated the superiority of deepPseudoMSI over traditional approaches and the capacity of our method to achieve an accurate individualized diagnosis. Our framework lays the foundation for future metabolic-based precision medicine.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Review on Deep Learning-Based Face Analysis
    Talab, Mohammed Ahmed
    Tao, Hai
    Al-Saffar, Ahmed Ali Mohammed
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7630 - 7635
  • [22] Deep Learning Approach for Dynamic Sampling for Multichannel Mass Spectrometry Imaging
    Helminiak, David
    Hu, Hang
    Laskin, Julia
    Ye, Dong Hye
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 250 - 259
  • [23] Deep learning-based image analysis for in situ microscopic imaging of cell culture process
    Wang, Xiaoli
    Zhou, Guangzheng
    Liang, Lipeng
    Liu, Yuan
    Luo, An
    Wen, Zhenguo
    Wang, Xue Zhong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [24] Deep learning-based magnetic resonance imaging analysis for chronic cerebral hypoperfusion risk
    Yang, Meiyi
    Yang, Lili
    Zhang, Qi
    Xu, Lifeng
    Yang, Bo
    Li, Yingjie
    Cheng, Xudong
    Zhang, Feng
    Liu, Ming
    Yu, Nengwei
    MEDICAL PHYSICS, 2024, 51 (08) : 5270 - 5282
  • [25] Mass Spectrometry and Mass Spectrometry Imaging-based Thyroid Cancer Analysis
    Wang, Hao-Jiang
    Li, Bo
    Zhang, Meng-Ting
    Chai, Chao-Fan
    Li, Xiao-Rong
    Li, Ning
    Xiao, Hong
    Bian, Wei
    JOURNAL OF ANALYSIS AND TESTING, 2022, 6 (03) : 235 - 246
  • [26] Mass Spectrometry and Mass Spectrometry Imaging-based Thyroid Cancer Analysis
    Hao-Jiang Wang
    Bo Li
    Meng-Ting Zhang
    Chao-Fan Chai
    Xiao-Rong Li
    Ning Li
    Hong Xiao
    Wei Bian
    Journal of Analysis and Testing, 2022, 6 (03) : 235 - 246
  • [27] Mass Spectrometry and Mass Spectrometry Imaging-based Thyroid Cancer Analysis
    Hao-Jiang Wang
    Bo Li
    Meng-Ting Zhang
    Chao-Fan Chai
    Xiao-Rong Li
    Ning Li
    Hong Xiao
    Wei Bian
    Journal of Analysis and Testing, 2022, 6 : 235 - 246
  • [28] Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine
    Joshi, Sunil K.
    Piehowski, Paul
    Liu, Tao
    Gosline, Sara J. C.
    McDermott, Jason E.
    Druker, Brian J.
    Traer, Elie
    Tyner, Jeffrey W.
    Agarwal, Anupriya
    Tognon, Cristina E.
    Rodland, Karin D.
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2024, 64 : 455 - 479
  • [29] Deep learning-based color transfer biomedical imaging technology
    Bian Y.
    Xing T.
    Deng W.
    Xian Q.
    Qiao H.
    Yu Q.
    Peng J.
    Yang X.
    Jiang Y.
    Wang J.
    Yang S.
    Shen R.
    Shen H.
    Kuang C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (02):
  • [30] Deep Learning-Based Image Segmentation on Multimodal Medical Imaging
    Guo, Zhe
    Li, Xiang
    Huang, Heng
    Guo, Ning
    Li, Quanzheng
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 162 - 169