Deep learning-based pseudo-mass spectrometry imaging analysis for precision medicine

被引:6
|
作者
Shen, Xiaotao [1 ]
Shao, Wei [1 ]
Wang, Chuchu [1 ]
Liang, Liang [1 ]
Chen, Songjie [1 ]
Zhang, Sai [1 ]
Rusu, Mirabela [1 ]
Snyder, Michael P. [1 ]
机构
[1] Stanford Sch Med, Stanford, CA 94305 USA
关键词
deep-learning; pseudo-mass spectrometry imaging; diagnosis; METABOLOMICS; ANNOTATION;
D O I
10.1093/bib/bbac331
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics provides systematic profiling of metabolic. Yet, its applications in precision medicine (disease diagnosis) have been limited by several challenges, including metabolite identification, information loss and low reproducibility. Here, we present the deep-learning-based Pseudo-Mass Spectrometry Imaging (deeppseudoMSI) project (https://www.deeppseudomsi.org/), which converts LC-MS raw data to pseudo-MS images and then processes them by deep learning for precision medicine, such as disease diagnosis. Extensive tests based on real data demonstrated the superiority of deepPseudoMSI over traditional approaches and the capacity of our method to achieve an accurate individualized diagnosis. Our framework lays the foundation for future metabolic-based precision medicine.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] DeepION: A Deep Learning-Based Low-Dimensional Representation Model of Ion Images for Mass Spectrometry Imaging
    Guo, Lei
    Xie, Chengyi
    Miao, Rui
    Xu, Jingjing
    Xu, Xiangnan
    Fang, Jiacheng
    Wang, Xiaoxiao
    Liu, Wuping
    Liao, Xiangwen
    Wang, Jianing
    Dong, Jiyang
    Cai, Zongwei
    ANALYTICAL CHEMISTRY, 2024, 96 (09) : 3829 - 3836
  • [2] Deep learning for tumor classification in imaging mass spectrometry
    Behrmann, Jens
    Etmann, Christian
    Boskamp, Tobias
    Casadonte, Rita
    Kriegsmann, Joerg
    Maass, Peter
    BIOINFORMATICS, 2018, 34 (07) : 1215 - 1223
  • [3] Research progress of deep learning applications in mass spectrometry imaging data analysis
    Huang, Dongdong
    Liu, Xinyu
    Xu, Guowang
    CHINESE JOURNAL OF CHROMATOGRAPHY, 2024, 42 (07) : 669 - 680
  • [4] Deep learning-based imaging in radio interferometry
    Schmidt, K.
    Geyer, F.
    Froese, S.
    Blomenkamp, P-S
    Brueggen, M.
    de Gasperin, F.
    Elsaesser, D.
    Rhode, W.
    ASTRONOMY & ASTROPHYSICS, 2022, 664
  • [5] A deep learning-based approach for pseudo-satellite positioning
    Li, Shuang
    Wang, Jiacheng
    Yu, Baoguo
    Xing, Hantong
    Wang, Shuang
    IET COMMUNICATIONS, 2024, 18 (17) : 1140 - 1150
  • [6] Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
    Xiao, Xu
    Qiao, Ying
    Jiao, Yudi
    Fu, Na
    Yang, Wenxian
    Wang, Liansheng
    Yu, Rongshan
    Han, Jiahuai
    FRONTIERS IN GENETICS, 2021, 12
  • [7] High Precision Deep Learning-Based Tabular Position Detection
    Jiang, JiChu
    Simsek, Murat
    Kantarci, Burak
    Khan, Shahzad
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 282 - 288
  • [8] eLIMS: Ensemble Learning-Based Spatial Segmentation of Mass Spectrometry Imaging to Explore Metabolic Heterogeneity
    Shah, Mudassir
    Guo, Lei
    Xu, Xiangnan
    Deng, Lingli
    Lu, Keyi
    Dong, Jiyang
    Zhao, Chao
    Xu, Jingjing
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (08) : 3088 - 3095
  • [9] Deep Learning-Based Automated Imaging Classification of ADPKD
    Kim, Youngwoo
    Bu, Seonah
    Tao, Cheng
    Bae, Kyongtae T.
    KIDNEY INTERNATIONAL REPORTS, 2024, 9 (06): : 1802 - 1809
  • [10] Deep Learning-based Low Dose CT Imaging
    Wang, Tonghe
    Lei, Yang
    Dong, Xue
    Tian, Zhen
    Tang, Xiangyang
    Liu, Yingzi
    Jiang, Xiaojun
    Curran, Walter J.
    Liu, Tian
    Shu, Hui-Kuo
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312