Object Detection at Sea Using Ensemble Methods Across Spectral Ranges

被引:1
|
作者
Scholler, Frederik E. T. [1 ]
Plenge-Feidenhans'l, Martin K. [1 ]
Stets, Jonathan D. [1 ]
Blanke, Mogens [2 ]
机构
[1] Tech Univ Denmark, Automat & Control Grp, Dept Elect Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, Sect Image Anal & Computger Graph, Lyngby, Denmark
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 16期
关键词
Multi-modal sensor fusion; Deep learning; Detection performance; Object detectionm at sea; Computer vision; Autonomous Marine Vehicles;
D O I
10.1016/j.ifacol.2021.10.065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Having the option of a temporally unmanned bridge when conditions allow, while maintaining or even enhancing navigational safety, is a long term aim in the maritime industry. Such a system requires excellent perception of the environment using an array of sensors. This paper investigates performance of object detection at sea using electro-optical sensors in relevant spectral ranges and discusses how missed detection risk is minimised for objects within navigation range. Using a combination of cameras in visible, near- and far infrared ranges, convolutional neural networks are employed for object detection. Ensemble techniques are suggested to minimise the amount of missed detections and it is shown how optimisation of confidence thresholds can be used to increase performance. The results are based on image data from vessels in near-coast operation in Danish waters. Copyright (C) 2021 The Authors.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [41] The evolution of object detection methods
    Sun, Yibo
    Sun, Zhe
    Chen, Weitong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [42] The evolution of object detection methods
    Sun, Yibo
    Sun, Zhe
    Chen, Weitong
    Engineering Applications of Artificial Intelligence, 2024, 133
  • [43] The evolution of object detection methods
    Sun, Yibo
    Sun, Zhe
    Chen, Weitong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [44] Object detection using deep ensemble model for enhancing security towards sustainable agriculture
    Singh P.
    Krishnamurthi R.
    International Journal of Information Technology, 2023, 15 (6) : 3113 - 3126
  • [45] Hardware Architecture for High-Speed Object Detection Using Decision Tree Ensemble
    Mitsunari, Koichi
    Yu, Jaehoon
    Onoye, Takao
    Hashimoto, Masanori
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (09) : 1298 - 1307
  • [46] SyNet: An Ensemble Network for Object Detection in UAV Images
    Albaba, Berat Mert
    Ozer, Sedat
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10227 - 10234
  • [47] Carried Object Detection Based on an Ensemble of Contour Exemplars
    Ghadiri, Farnoosh
    Bergevin, Robert
    Bilodeau, Guillaume-Alexandre
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 852 - 866
  • [48] Premature Ventricular Beat Detection by Using Spectral Clustering Methods
    Ribeiro, B. R.
    Marques, A. M.
    Henriques, J. H.
    Antunes, M. A.
    COMPUTERS IN CARDIOLOGY 2007, VOL 34, 2007, 34 : 149 - +
  • [49] Circulating tumor cell detection using photoacoustic spectral methods
    Strohm, Eric M.
    Berndl, Elizabeth S. L.
    Kolios, Michael C.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2014, 2014, 8943
  • [50] Remote detection of bottleneck links using spectral and statistical methods
    He, Xinming
    Papadopoulos, Christos
    Heidemann, John
    Mitra, Urbashi
    Riaz, Usman
    COMPUTER NETWORKS, 2009, 53 (03) : 279 - 298