Object Detection at Sea Using Ensemble Methods Across Spectral Ranges

被引:1
|
作者
Scholler, Frederik E. T. [1 ]
Plenge-Feidenhans'l, Martin K. [1 ]
Stets, Jonathan D. [1 ]
Blanke, Mogens [2 ]
机构
[1] Tech Univ Denmark, Automat & Control Grp, Dept Elect Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, Sect Image Anal & Computger Graph, Lyngby, Denmark
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 16期
关键词
Multi-modal sensor fusion; Deep learning; Detection performance; Object detectionm at sea; Computer vision; Autonomous Marine Vehicles;
D O I
10.1016/j.ifacol.2021.10.065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Having the option of a temporally unmanned bridge when conditions allow, while maintaining or even enhancing navigational safety, is a long term aim in the maritime industry. Such a system requires excellent perception of the environment using an array of sensors. This paper investigates performance of object detection at sea using electro-optical sensors in relevant spectral ranges and discusses how missed detection risk is minimised for objects within navigation range. Using a combination of cameras in visible, near- and far infrared ranges, convolutional neural networks are employed for object detection. Ensemble techniques are suggested to minimise the amount of missed detections and it is shown how optimisation of confidence thresholds can be used to increase performance. The results are based on image data from vessels in near-coast operation in Danish waters. Copyright (C) 2021 The Authors.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Noise Detection for Ensemble Methods
    Szupiluk, Ryszard
    Wojewnik, Piotr
    Zabkowski, Tomasz
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2010, 6113 : 471 - 478
  • [22] Ensemble Detection: A New Architecture for MultiSensor Data Fusion with Ensemble Learning for Object Detection
    Ozay, Mete
    Akalin, Okan
    Yarman-Vural, Fatos T.
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 419 - 424
  • [23] Object Detection on Resource-Constrained Platforms Using a Configurable Ensemble of Detectors
    Lee, Eung-Joo
    Mattingly, Alexander
    Xie, Jing
    Kwon, Heesung
    Bhattacharyya, Shuvra S.
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2022, 2022, 12102
  • [24] Multiscale Object Detection from Drone Imagery Using Ensemble Transfer Learning
    Walambe, Rahee
    Marathe, Aboli
    Kotecha, Ketan
    DRONES, 2021, 5 (03)
  • [25] CHOICE OF OPTIMAL SPECTRAL RANGES FOR THE STUDY OF SEA BRIGHTNESS VARIATIONS
    YAKOVLEV, AA
    STAVITSKAYA, NA
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1979, 15 (07): : 768 - 770
  • [26] Ensemble R-FCN for Object Detection
    Li, Jian
    Qian, Jianjun
    Zheng, Yuhui
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 400 - 406
  • [27] An Ensemble Method of CNN Models for Object Detection
    Lee, Jinsu
    Lee, Sang-Kwang
    Yang, Seong-Il
    2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2018, : 898 - 901
  • [28] Identification of most useful spectral ranges in improvement of target detection using hyperspectral data
    Yadav, Deepti
    Arora, M. K.
    Tiwari, K. C.
    Ghosh, J. K.
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2019, 22 (03): : 347 - 357
  • [29] Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods
    Martha, Tapas R.
    Kerle, Norman
    Jetten, Victor
    van Westen, Cees J.
    Kumar, K. Vinod
    GEOMORPHOLOGY, 2010, 116 (1-2) : 24 - 36
  • [30] SALIENT OBJECT DETECTION IN HYPERSPECTRAL IMAGERY USING SPECTRAL GRADIENT CONTRAST
    Yan, Hangqi
    Zhang, Yanning
    Wei, Wei
    Zhang, Lei
    Li, Yang
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1560 - 1563