The Enriched Crouzeix-Raviart Elements are Equivalent to the Raviart-Thomas Elements

被引:9
|
作者
Hu, Jun [1 ,2 ]
Ma, Rui [1 ,2 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Crouzeix-Raviart element; Enriched Crouzeix-Raviart element; Raviart-Thomas element; The Poisson equation; The Stokes equation; Eigenvalue problem; PLATE BENDING PROBLEMS; ELLIPTIC-OPERATORS; ERROR ANALYSIS; LOWER BOUNDS; A-PRIORI; CONVERGENCE; EIGENVALUES; IMPLEMENTATION; APPROXIMATION; FORMULATION;
D O I
10.1007/s10915-014-9899-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix-Raviart elements are actually identical to the first order Raviart-Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart-Thomas element is equal to that by the Crouzeix-Raviart element. For the eigenvalue problem of the Laplace operator, this paper proves that the error of the enriched Crouzeix-Raviart element is equivalent to that of the first order Raviart-Thomas element up to higher order terms.
引用
收藏
页码:410 / 425
页数:16
相关论文
共 50 条
  • [41] Forward simulation and inverse dipole localization with the lowest order Raviart-Thomas elements for electroencephalography
    Pursiainen, S.
    Sorrentino, A.
    Campi, C.
    Piana, M.
    INVERSE PROBLEMS, 2011, 27 (04)
  • [43] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 508 - 526
  • [44] ADAPTIVE NONCONFORMING CROUZEIX-RAVIART FEM FOR EIGENVALUE PROBLEMS
    Carstensen, Carsten
    Gallistl, Dietmar
    Schedensack, Mira
    MATHEMATICS OF COMPUTATION, 2015, 84 (293) : 1061 - 1087
  • [45] Crouzeix-Raviart Approximation of the Total Variation on Simplicial Meshes
    Chambolle, Antonin
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 872 - 899
  • [46] A general quadratic enrichment of the Crouzeix-Raviart finite element
    Nudo, Federico
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [47] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Feng, Min-fu
    Qi, Rui-sheng
    Zhu, Rui
    Ju, Bing-tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (03) : 393 - 404
  • [48] A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements
    Wohlmuth, BI
    Hoppe, RHW
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1347 - 1378
  • [49] A finite strain Raviart-Thomas tetrahedron
    Areias, P.
    Tiago, C.
    Carrilho Lopes, J.
    Carapau, Fernando
    Correia, Paulo
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2020, 80
  • [50] A 3D Crouzeix-Raviart mortar finite element
    Leszek Marcinkowski
    Talal Rahman
    Jan Valdman
    Computing, 2009, 86 : 313 - 330