The Enriched Crouzeix-Raviart Elements are Equivalent to the Raviart-Thomas Elements

被引:9
|
作者
Hu, Jun [1 ,2 ]
Ma, Rui [1 ,2 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Crouzeix-Raviart element; Enriched Crouzeix-Raviart element; Raviart-Thomas element; The Poisson equation; The Stokes equation; Eigenvalue problem; PLATE BENDING PROBLEMS; ELLIPTIC-OPERATORS; ERROR ANALYSIS; LOWER BOUNDS; A-PRIORI; CONVERGENCE; EIGENVALUES; IMPLEMENTATION; APPROXIMATION; FORMULATION;
D O I
10.1007/s10915-014-9899-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix-Raviart elements are actually identical to the first order Raviart-Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart-Thomas element is equal to that by the Crouzeix-Raviart element. For the eigenvalue problem of the Laplace operator, this paper proves that the error of the enriched Crouzeix-Raviart element is equivalent to that of the first order Raviart-Thomas element up to higher order terms.
引用
收藏
页码:410 / 425
页数:16
相关论文
共 50 条
  • [31] PARAMETRIC RAVIART-THOMAS ELEMENTS FOR MIXED METHODS ON DOMAINS WITH CURVED SURFACES
    Bertrand, Fleurianne
    Starke, Gerhard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3648 - 3667
  • [32] A trace result for nonconforming Crouzeix-Raviart finite elements, application to the discretization of Darcy's equations
    Bernardi, Christine
    Girault, Vivette
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (04) : 271 - 276
  • [33] Superconvergence of the Crouzeix-Raviart element for elliptic equation
    Yidan Zhang
    Yunqing Huang
    Nianyu Yi
    Advances in Computational Mathematics, 2019, 45 : 2833 - 2844
  • [34] On the multilevel preconditioning of Crouzeix-Raviart elliptic problems
    Kraus, J.
    Margenov, S.
    Synka, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (05) : 395 - 416
  • [35] A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements
    Ainsworth, Mark
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01): : 189 - 204
  • [36] A Bernstein-Bezier Basis for Arbitrary Order Raviart-Thomas Finite Elements
    Ainsworth, Mark
    Andriamaro, Gaelle
    Davydov, Oleg
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (01) : 1 - 22
  • [37] Error analysis of Crouzeix–Raviart and Raviart–Thomas finite element methods
    Kenta Kobayashi
    Takuya Tsuchiya
    Japan Journal of Industrial and Applied Mathematics, 2018, 35 : 1191 - 1211
  • [38] Orthogonality relations of Crouzeix–Raviart and Raviart–Thomas finite element spaces
    Sören Bartels
    Zhangxian Wang
    Numerische Mathematik, 2021, 148 : 127 - 139
  • [39] Approximation properties of lowest-order hexahedral Raviart-Thomas finite elements
    Bermúdez, A
    Gamallo, P
    Nogueiras, MR
    Rodríguez, R
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (09) : 687 - 692
  • [40] Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity
    Hansbo, P
    Larson, MG
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01): : 63 - 72