scGAC: a graph attentional architecture for clustering single-cell RNA-seq data

被引:48
|
作者
Cheng, Yi [1 ]
Ma, Xiuli [1 ]
机构
[1] Peking Univ, Sch Artificial Intelligence, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
关键词
EMBRYOS;
D O I
10.1093/bioinformatics/btac099
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results. Results: Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods.
引用
收藏
页码:2187 / 2193
页数:7
相关论文
共 50 条
  • [41] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672
  • [42] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [43] Comparison of transformations for single-cell RNA-seq data
    Ahlmann-Eltze, Constantin
    Huber, Wolfgang
    NATURE METHODS, 2023, 20 (05) : 665 - +
  • [44] scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
    Zile Wang
    Haiyun Wang
    Jianping Zhao
    Chunhou Zheng
    BMC Bioinformatics, 24
  • [45] Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
    Wang, Chunxiang
    Gao, Xin
    Liu, Juntao
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [46] Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
    Chunxiang Wang
    Xin Gao
    Juntao Liu
    BMC Bioinformatics, 21
  • [47] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Lin, Peijie
    Troup, Michael
    Ho, Joshua W. K.
    GENOME BIOLOGY, 2017, 18
  • [48] FlowGrid enables fast clustering of very large single-cell RNA-seq data
    Fang, Xiunan
    Ho, Joshua W. K.
    BIOINFORMATICS, 2022, 38 (01) : 282 - 283
  • [49] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Peijie Lin
    Michael Troup
    Joshua W. K. Ho
    Genome Biology, 18
  • [50] Single-cell RNA-seq data analysis based on directed graph neural network
    Feng, Xiang
    Zhang, Hongqi
    Lin, Hao
    Long, Haixia
    METHODS, 2023, 211 : 48 - 60