scGAC: a graph attentional architecture for clustering single-cell RNA-seq data

被引:48
|
作者
Cheng, Yi [1 ]
Ma, Xiuli [1 ]
机构
[1] Peking Univ, Sch Artificial Intelligence, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
关键词
EMBRYOS;
D O I
10.1093/bioinformatics/btac099
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results. Results: Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods.
引用
收藏
页码:2187 / 2193
页数:7
相关论文
共 50 条
  • [31] SC3: Consensus clustering of single-cell RNA-seq data
    Kiselev V.Y.
    Kirschner K.
    Schaub M.T.
    Andrews T.
    Yiu A.
    Chandra T.
    Natarajan K.N.
    Reik W.
    Barahona M.
    Green A.R.
    Hemberg M.
    Nature Methods, 2017, 14 (5) : 483 - 486
  • [32] Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network
    Gan, Yanglan
    Huang, Xingyu
    Zou, Guobing
    Zhou, Shuigeng
    Guan, Jihong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [33] Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
    Feng, Xiang
    Fang, Fang
    Long, Haixia
    Zeng, Rao
    Yao, Yuhua
    FRONTIERS IN GENETICS, 2022, 13
  • [34] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [35] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [36] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [37] scMAE: a masked autoencoder for single-cell RNA-seq clustering
    Fang, Zhaoyu
    Zheng, Ruiqing
    Li, Min
    BIOINFORMATICS, 2024, 40 (01)
  • [38] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [39] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [40] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19