Alternative scenarios of spiral breakup in a reaction-diffusion model with excitable and oscillatory dynamics

被引:78
|
作者
Bär, M [1 ]
Or-Guil, M [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.82.1160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Instabilities (breakup) of spiral waves in two dimensions and their one-dimensional analogs-wave trains triggered by a specific boundary condition-leading to spatiotemporally chaotic dynamics are investigated in a simple activator-inhibitor model. These instabilities: always require an absolute instability of the emitted wave trains and coincide with the Eckhaus instability for the excitable case, while for oscillatory conditions the well-known convective variant of the Eckhaus instability is found. The different cases correspond to different spiral breakup phenomenologies [S0031-9007(99)08410-0].
引用
收藏
页码:1160 / 1163
页数:4
相关论文
共 50 条
  • [41] Stable squares and other oscillatory Turing patterns in a reaction-diffusion model
    Yang, LF
    Zhabotinsky, AM
    Epstein, IR
    PHYSICAL REVIEW LETTERS, 2004, 92 (19) : 198303 - 1
  • [42] Reaction-Diffusion Dynamics of pH Oscillators in Oscillatory Forced Open Spatial Reactors
    Duzs, Brigitta
    Molnar, Istvan
    Lagzi, Istvan
    Szalai, Istvan
    ACS OMEGA, 2021, 6 (50): : 34367 - 34374
  • [43] OSCILLATORY DYNAMICS IN A REACTION-DIFFUSION SYSTEM IN THE PRESENCE OF 0:1:2 RESONANCE
    Ogawa, Toshiyuki
    Okuda, Takashi
    NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) : 893 - 926
  • [44] Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system
    Nagayama, Masaharu
    Ueda, Kei-ichi
    Yadome, Masaaki
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (02) : 295 - 322
  • [45] A delay reaction-diffusion model of the dynamics of botulinum in fish
    Crauste, Fablien
    Hbid, M. Lhassan
    Kacha, Abdelaziz
    MATHEMATICAL BIOSCIENCES, 2008, 216 (01) : 17 - 29
  • [46] Dynamics on a degenerated reaction-diffusion Zika transmission model
    Ren, Xinzhi
    Wang, Kaifa
    Liu, Xianning
    APPLIED MATHEMATICS LETTERS, 2024, 150
  • [47] Dynamics of a strongly nonlocal reaction-diffusion population model
    Billingham, J
    NONLINEARITY, 2004, 17 (01) : 313 - 346
  • [48] Calcium dynamics on a stochastic reaction-diffusion lattice model
    Guisoni, Nara
    de Oliveira, Mario J.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [49] A reaction-diffusion model of forest boundary with seed dynamics
    Rajasingh, J.
    Murugesu, R.
    Shabudeen, P. Syed
    International Journal of Biomathematics, 2015, 8 (03)
  • [50] The dynamics of boundary spikes for a nonlocal reaction-diffusion model
    Iron, D
    Ward, MJ
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 : 491 - 514