Alternative scenarios of spiral breakup in a reaction-diffusion model with excitable and oscillatory dynamics

被引:78
|
作者
Bär, M [1 ]
Or-Guil, M [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.82.1160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Instabilities (breakup) of spiral waves in two dimensions and their one-dimensional analogs-wave trains triggered by a specific boundary condition-leading to spatiotemporally chaotic dynamics are investigated in a simple activator-inhibitor model. These instabilities: always require an absolute instability of the emitted wave trains and coincide with the Eckhaus instability for the excitable case, while for oscillatory conditions the well-known convective variant of the Eckhaus instability is found. The different cases correspond to different spiral breakup phenomenologies [S0031-9007(99)08410-0].
引用
收藏
页码:1160 / 1163
页数:4
相关论文
共 50 条
  • [21] Reaction-diffusion dynamics in an oscillatory medium of finite size: Pseudoreflection of waves
    Rabinovitch, A
    Gutman, M
    Aviram, I
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [22] Wave instability and spatiotemporal chaos in reaction-diffusion system with oscillatory dynamics
    Xie, FG
    Yang, JZ
    Li, HG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (01) : 180 - 188
  • [23] Inducing and modulating spiral waves by delayed feedback in a uniform oscillatory reaction-diffusion system
    Hu, Haixiang
    Li, Xiaochun
    Fang, Zhiming
    Fu, Xu
    Ji, Lin
    Li, Qianshu
    CHEMICAL PHYSICS, 2010, 371 (1-3) : 60 - 65
  • [24] Wave Instability and Spatiotemporal Chaos in Reaction-Diffusion System with Oscillatory Dynamics
    XIE Fa-Gen~1 YANG Jun-Zhong~2 LI Hong-Gang~31 Research Department
    CommunicationsinTheoreticalPhysics, 2006, 45 (01) : 180 - 188
  • [25] On the breakup of target and spiral waves on a disk in a reaction-diffusion system with long-range interaction
    Nekhamkina, O.
    Sheintuch, M.
    Physica A: Statistical Mechanics and its Applications, 1998, 249 (1-4): : 134 - 140
  • [26] Global dynamics of a reaction-diffusion malaria model
    Xin, Ming-Zhen
    Wang, Bin-Guo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [27] On the dynamics of a nonlinear reaction-diffusion duopoly model
    Rionero, Salvatore
    Torcicollo, Isabella
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 105 - 111
  • [28] On the nonlinear dynamics of an ecoepidemic reaction-diffusion model
    Capone, Florinda
    De Luca, Roberta
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 95 : 307 - 314
  • [29] On the breakup of target and spiral waves disk in a reaction-diffusion system with long-range interaction
    Nekhamkina, O
    Sheintuch, M
    PHYSICA A, 1998, 249 (1-4): : 134 - 140
  • [30] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258