GENERATION OF SMAP 9 KM SOIL MOISTURE USING A SPATIO-TEMPORAL INFORMATION FUSION MODEL

被引:0
|
作者
Jiang, Hongtao [1 ]
Shen, Huanfeng [1 ]
Li, Xinghua [2 ]
Zhang, Liangpei [3 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
SMAP; failed radar; STNLFFM; 9 km soil moisture generation; LANDSAT;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil Moisture Active Passive ( SMAP) satellite mission, launched on Jan. 31, 2015, can provide a 9 km soil moisture product globally by merging passive and active observations. However, the radar sensor of SMAP was failed since Jul. 7, 2015 and SMAP 9 km SM product (SMAP_AP) is only available for 85 days. To ameliorate the vacancy of SMAP_AP, a spatiotemporal fusion model STNLFFM combined with the SMAP 36 km soil moisture product (SMAP_P) is utilized to generate 9 km soil moisture SM product (SMAP_F). Generation of SMAP_F was implemented over one year from Apr. 13, 2015 to Apr. 12, 2016 in the paper. Then SMAP_F was evaluated by SMAP_AP and in-situ soil moisture from international soil moisture network. It is revealed that the STNLFFM can be taken as an effective method for SMAP 9 km soil moisture generation.
引用
收藏
页码:2008 / 2011
页数:4
相关论文
共 50 条
  • [41] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    SONG Xiaodong
    ZHANG Ganlin
    LIU Feng
    LI Decheng
    ZHAO Yuguo
    YANG Jinling
    Journal of Arid Land, 2016, 8 (05) : 734 - 748
  • [42] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    Xiaodong Song
    Ganlin Zhang
    Feng Liu
    Decheng Li
    Yuguo Zhao
    Jinling Yang
    Journal of Arid Land, 2016, 8 : 734 - 748
  • [43] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    Song Xiaodong
    Zhang Ganlin
    Liu Feng
    Li Decheng
    Zhao Yuguo
    Yang Jinling
    JOURNAL OF ARID LAND, 2016, 8 (05) : 734 - 748
  • [44] How effective is information on soil-landscape units for determining spatio-temporal variability of near-surface soil moisture?
    Nasta, Paolo
    Sica, Benedetto
    Mazzitelli, Caterina
    Di Fiore, Paola
    Lazzaro, Ugo
    Palladino, Mario
    Romano, Nunzio
    JOURNAL OF AGRICULTURAL ENGINEERING, 2018, 49 (03) : 174 - 182
  • [45] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):
  • [46] Spatio-temporal dynamics of vehicles: Fusion of traffic data and context information
    Bolanos-Martinez, Daniel
    Bermudez-Edo, Maria
    Garrido, Jose Luis
    Delgado-Marquez, Blanca L.
    DATA IN BRIEF, 2024, 53
  • [47] STFM: Accurate Spatio-Temporal Fusion Model for Weather Forecasting
    Liu, Jun
    Wu, Li
    Zhang, Tao
    Huang, Jianqiang
    Wang, Xiaoying
    Tian, Fang
    ATMOSPHERE, 2024, 15 (10)
  • [48] Reconstruction of a Global 9 km, 8-Day SMAP Surface Soil Moisture Dataset during 2015-2020 by Spatiotemporal Fusion
    Yang, Haoxuan
    Wang, Qunming
    Zhao, Wei
    Tong, Xiaohua
    Atkinson, Peter M.
    JOURNAL OF REMOTE SENSING, 2022, 2022
  • [49] A spatio-temporal attention fusion model for students behaviour recognition
    Wang, Xiaoli
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2022, 9 (34)
  • [50] Visual Tracking With Spatio-Temporal Dempster-Shafer Information Fusion
    Li, Xi
    Dick, Anthony
    Shen, Chunhua
    Zhang, Zhongfei
    van den Hengel, Anton
    Wang, Hanzi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3028 - 3040