GENERATION OF SMAP 9 KM SOIL MOISTURE USING A SPATIO-TEMPORAL INFORMATION FUSION MODEL

被引:0
|
作者
Jiang, Hongtao [1 ]
Shen, Huanfeng [1 ]
Li, Xinghua [2 ]
Zhang, Liangpei [3 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
SMAP; failed radar; STNLFFM; 9 km soil moisture generation; LANDSAT;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil Moisture Active Passive ( SMAP) satellite mission, launched on Jan. 31, 2015, can provide a 9 km soil moisture product globally by merging passive and active observations. However, the radar sensor of SMAP was failed since Jul. 7, 2015 and SMAP 9 km SM product (SMAP_AP) is only available for 85 days. To ameliorate the vacancy of SMAP_AP, a spatiotemporal fusion model STNLFFM combined with the SMAP 36 km soil moisture product (SMAP_P) is utilized to generate 9 km soil moisture SM product (SMAP_F). Generation of SMAP_F was implemented over one year from Apr. 13, 2015 to Apr. 12, 2016 in the paper. Then SMAP_F was evaluated by SMAP_AP and in-situ soil moisture from international soil moisture network. It is revealed that the STNLFFM can be taken as an effective method for SMAP 9 km soil moisture generation.
引用
收藏
页码:2008 / 2011
页数:4
相关论文
共 50 条
  • [31] High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks
    Eroglu, Orhan
    Kurum, Mehmet
    Boyd, Dylan
    Gurbuz, Ali Cafer
    REMOTE SENSING, 2019, 11 (19)
  • [32] SPATIO-TEMPORAL VARIATION OF SOIL MOISTURE AND DROUGHT MONITORING USING PASSIVE MICROWAVE REMOTE SENSING
    Thiruvengadam, P.
    Rao, Y. S.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3126 - 3129
  • [33] Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning
    A, Yinglan
    Jiang, Xiaoman
    Wang, Yuntao
    Wang, Libo
    Zhang, Zihao
    Duan, Limin
    Fang, Qingqing
    JOURNAL OF CONTAMINANT HYDROLOGY, 2023, 258
  • [34] High Spatio-Temporal Resolution Deformation Time Series With the Fusion of InSAR and GNSS Data Using Spatio-Temporal Random Effect Model
    Liu, Ning
    Dai, Wujiao
    Santerre, Rock
    Hu, Jun
    Shi, Qiang
    Yang, Changjiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 364 - 380
  • [35] Spatio-temporal prediction of soil moisture and soil strength by depth-to-water maps
    Schoenauer, Marian
    Vaatainen, Kari
    Prinz, Robert
    Lindeman, Harri
    Pszenny, Dariusz
    Jansen, Martin
    Maack, Joachim
    Talbot, Bruce
    Astrup, Rasmus
    Jaeger, Dirk
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 105
  • [36] Spatio-temporal model for soil characteristic of reclamation land
    CHEN Qiu-ji~(1
    2. Henan Polytechnic University
    3. China University of Geosciences
    4. Hebei Polytechnic University
    5. China Railway Shiqiju Group Corporation
    Transactions of Nonferrous Metals Society of China, 2005, (S1) : 45 - 48
  • [37] Spatio-temporal model for soil characteristic of reclamation land
    Chen, QJ
    Hu, ZQ
    Fu, MC
    Xie, HQ
    Hao, HF
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 : 37 - 40
  • [38] Assessment of 9 km SMAP soil moisture: Evidence of narrowing the gap between satellite retrievals and model-based reanalysis
    Xing, Zanpin
    Li, Xiaojun
    Fan, Lei
    Colliander, Andreas
    Frappart, Frederic
    de Rosnay, Patricia
    Fernandez-Moran, Roberto
    Liu, Xiangzhuo
    Wang, Huan
    Zhao, Lin
    Wigneron, Jean-Pierre
    REMOTE SENSING OF ENVIRONMENT, 2023, 296
  • [39] Model term selection for spatio-temporal system identification using mutual information
    Wang, Shu
    Wei, Hua-Liang
    Coca, Daniel
    Billings, Stephen A.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (02) : 223 - 231
  • [40] Video Synopsis Generation Using Spatio-Temporal Groups
    Ahmed, A.
    Kar, S.
    Dogra, D. P.
    Patnaik, R.
    Lee, S.
    Choi, H.
    Kim, I.
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 512 - 517