GENERATION OF SMAP 9 KM SOIL MOISTURE USING A SPATIO-TEMPORAL INFORMATION FUSION MODEL

被引:0
|
作者
Jiang, Hongtao [1 ]
Shen, Huanfeng [1 ]
Li, Xinghua [2 ]
Zhang, Liangpei [3 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
SMAP; failed radar; STNLFFM; 9 km soil moisture generation; LANDSAT;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil Moisture Active Passive ( SMAP) satellite mission, launched on Jan. 31, 2015, can provide a 9 km soil moisture product globally by merging passive and active observations. However, the radar sensor of SMAP was failed since Jul. 7, 2015 and SMAP 9 km SM product (SMAP_AP) is only available for 85 days. To ameliorate the vacancy of SMAP_AP, a spatiotemporal fusion model STNLFFM combined with the SMAP 36 km soil moisture product (SMAP_P) is utilized to generate 9 km soil moisture SM product (SMAP_F). Generation of SMAP_F was implemented over one year from Apr. 13, 2015 to Apr. 12, 2016 in the paper. Then SMAP_F was evaluated by SMAP_AP and in-situ soil moisture from international soil moisture network. It is revealed that the STNLFFM can be taken as an effective method for SMAP 9 km soil moisture generation.
引用
收藏
页码:2008 / 2011
页数:4
相关论文
共 50 条
  • [1] Extending the SMAP 9-km soil moisture product using a spatio-temporal fusion model
    Jiang Hongtao
    Shen Huanfeng
    Li Xinghua
    Zeng Chao
    Liu Huiqin
    Lei Fangni
    REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [2] Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals
    Schoenauer, Marian
    Prinz, Robert
    Vaatainen, Kari
    Astrup, Rasmus
    Pszenny, Dariusz
    Lindeman, Harri
    Jaeger, Dirk
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [3] Optimization of ecosystem model parameters using spatio-temporal soil moisture information
    Zhu, Lin
    Chen, Jing M.
    Qin, Qiming
    Li, Jianping
    Wang, Lianxi
    ECOLOGICAL MODELLING, 2009, 220 (18) : 2121 - 2136
  • [4] MACHINE-LEARNING BASED RETRIEVAL OF SOIL MOISTURE AT HIGH SPATIO-TEMPORAL SCALES USING CYGNSS AND SMAP OBSERVATIONS
    Lei, Fangni
    Senyurek, Volkan
    Kurum, Mehmet
    Gurbuz, Ali
    Moorhead, Robert
    Boyd, Dylan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4470 - 4473
  • [5] Surface Soil Moisture Inversion and Distribution Based on Spatio-Temporal Fusion of MODIS and Landsat
    Wang, Sinan
    Wang, Wenjun
    Wu, Yingjie
    Zhao, Shuixia
    SUSTAINABILITY, 2022, 14 (16)
  • [6] Spatio-temporal variability of global soil moisture products
    Roetzer, K.
    Montzka, C.
    Vereecken, H.
    JOURNAL OF HYDROLOGY, 2015, 522 : 187 - 202
  • [7] On the spatio-temporal dynamics of soil moisture at the field scale
    Vereecken, H.
    Huisman, J. A.
    Pachepsky, Y.
    Montzka, C.
    van der Kruk, J.
    Bogena, H.
    Weihermueller, L.
    Herbst, M.
    Martinez, G.
    Vanderborght, J.
    JOURNAL OF HYDROLOGY, 2014, 516 : 76 - 96
  • [8] Rainfall Forecasting Based on Spatio-Temporal Information Fusion Using Informer
    Qiu, Chao
    Qiu, Ying-jie
    Wang, Bei
    Zhang, Zhuo-fan
    Chen, Qi
    2023 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: IOT AND SMART CITY, ITIOTSC 2023, 2023, : 73 - 78
  • [9] Spatio-temporal Soil Moisture Estimation Using Neural Network with Wavelet Preprocessing
    Kulaglic, Ajla
    Ustundag, B. Berk
    2017 6TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2017, : 130 - 135
  • [10] IMPROVING SOIL MOISTURE SPATIO-TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD
    Cui, Yaokui
    Chen, Xi
    Luo, Zengliang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4574 - 4577