HIP after sintering of ultrafine WC-Co hardmetals

被引:28
|
作者
Sánchez, JM
Ordóñez, A
González, R
机构
[1] CEIT, San Sebastian, Spain
[2] TECNUN, San Sebastian, Spain
[3] Univ Panamericana, Col Insurgentes Mixcoac, Mexico City 03100, DF, Mexico
关键词
ultrafine hardmetals; HIP; grain growth; hardness; flexural strength;
D O I
10.1016/j.ijrmhm.2005.03.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper analyses the changes induced by HIP after sintering on the microstructure and mechanical properties of WC-7wt.%Co ultrafine hardmetal grade. The well known correlation between porosity reduction and fracture strength improvement is confirmed in these compositions, this being more effective at HIP temperatures above the eutectic point of the alloy. In absence of GGI. hardness decreases continuously as the HIP temperature increases. However, for specimens containing VC and Cr3C2 additions. hardness increases as the HIP temperature increases from 1200 degrees C to 1400 degrees C. This anomalous trend, confirmed by WC grain size observations, could be related to the activation of coalescence mechanisms during solid state HIPing, which are inhibited by the presence of a liquid phase. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [31] A new approach to fabrication of gradient WC-Co hardmetals
    Konyashin, I.
    Hlawatschek, S.
    Ries, B.
    Lachmann, F.
    Sologubenko, A.
    Weirich, T.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (02): : 228 - 237
  • [32] FATIGUE-CRACK GROWTH IN WC-CO HARDMETALS
    ALMOND, EA
    ROEBUCK, B
    METALS TECHNOLOGY, 1980, 7 (FEB): : 83 - 85
  • [33] Research Progress of Sintering Technique of Ultrafine and Nano WC-Co Cemented Carbides
    Li M.
    Gong M.
    Zhang C.
    Mo D.
    Li M.
    Han D.
    Zhang H.
    Cailiao Daobao/Materials Reports, 2020, 34 (15): : 15138 - 15144
  • [34] Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide
    Szutkowska, M.
    Boniecki, M.
    Cygan, S.
    Kalinka, A.
    Grilli, M. L.
    Balos, S.
    E-MRS FALL SYMPOSIUM I: SOLUTIONS FOR CRITICAL RAW MATERIALS UNDER EXTREME CONDITIONS, 2018, 329
  • [35] ORIGIN OF WC SUBSTRUCTURE AND THE EFFECT OF PROCESSING ON THE MICROSTRUCTURE OF WC-Co HARDMETALS.
    Almond, Eric A.
    Roebuck, Bryan
    High Temperatures - High Pressures, 1982, 14 (02) : 143 - 154
  • [36] Effect of Heat Treatment on Structure and Properties of WC-Co Hardmetals
    Yang Jinhui Lai Hoyi (Institute of Mining and Mineral Engineering)(Department of Materials Science and Engineering
    北京科技大学学报, 1991, (S2) : 29 - 34
  • [37] Surface finishing: Impact on tribological characteristics of WC-Co hardmetals
    Bonny, K.
    De Baets, P.
    Quintelier, J.
    Vleugels, J.
    Jiang, D.
    Van der Biest, O.
    Lauwers, B.
    Liu, W.
    TRIBOLOGY INTERNATIONAL, 2010, 43 (1-2) : 40 - 54
  • [38] CORROSION, EROSION CORROSION, AND THE FLEXURAL STRENGTH OF WC-CO HARDMETALS
    TOMLINSON, WJ
    MOLYNEUX, ID
    JOURNAL OF MATERIALS SCIENCE, 1991, 26 (06) : 1605 - 1608
  • [39] Influence of microstructure on the abrasive edge wear of WC-Co hardmetals
    Krakhmalev, P. V.
    Rodil, T. Adeva
    Bergstrom, J.
    WEAR, 2007, 263 : 240 - 245
  • [40] Fracture toughness measurement of WC-Co hardmetals by indentation method
    Szutkowska, M
    JOURNAL OF ADVANCED MATERIALS, 1999, 31 (03): : 3 - 7