Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor

被引:80
|
作者
Hashim, Akel [1 ,2 ,3 ]
Naik, Ravi K. [1 ,3 ]
Morvan, Alexis [1 ,3 ]
Ville, Jean-Loup [1 ]
Mitchell, Bradley [1 ,3 ]
Kreikebaum, John Mark [1 ,4 ,10 ]
Davis, Marc [3 ]
Smith, Ethan [3 ]
Iancu, Costin [3 ]
O'Brien, Kevin P. [5 ]
Hincks, Ian [6 ,7 ]
Wallman, Joel J. [6 ,7 ,8 ,9 ]
Emerson, Joseph [6 ,7 ,8 ,9 ]
Siddiqi, Irfan [1 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02142 USA
[6] Quantum Benchmark Inc, Kitchener, ON N2H 5G5, Canada
[7] Keysight Technol Canada, Kanata, ON K2K 2W5, Canada
[8] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[10] Google Quantum AI, Mountain View, CA USA
关键词
ALGORITHMS;
D O I
10.1103/PhysRevX.11.041039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum (NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a coherent form of error that has no classical analog. Coherent errors severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors and therefore do not reliably predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these performance limitations by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict algorithm performance using experimentally measured error rates. Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Superconducting quantum computing: a review
    He-Liang HUANG
    Dachao WU
    Daojin FAN
    Xiaobo ZHU
    ScienceChina(InformationSciences), 2020, 63 (08) : 59 - 90
  • [42] Superconducting quantum computing: a review
    Huang, He-Liang
    Wu, Dachao
    Fan, Daojin
    Zhu, Xiaobo
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [43] Processor core model for quantum computing
    Yung, Man-Hong
    Benjamin, Simon C.
    Bose, Sougato
    PHYSICAL REVIEW LETTERS, 2006, 96 (22)
  • [44] Trapped electrons in vacuum for a scalable quantum processor
    Ciaramicoli, G
    Marzoli, I
    Tombesi, P
    PHYSICAL REVIEW A, 2004, 70 (03): : 032301 - 1
  • [45] Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases
    Herrmann, Johannes
    Llima, Sergi Masot
    Remm, Ants
    Zapletal, Petr
    McMahon, Nathan A.
    Scarato, Colin
    Swiadek, Francois
    Andersen, Christian Kraglund
    Hellings, Christoph
    Krinner, Sebastian
    Lacroix, Nathan
    Lazar, Stefania
    Kerschbaum, Michael
    Zanuz, Dante Colao
    Norris, Graham J.
    Hartmann, Michael J.
    Wallraff, Andreas
    Eichler, Christopher
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [46] Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases
    Johannes Herrmann
    Sergi Masot Llima
    Ants Remm
    Petr Zapletal
    Nathan A. McMahon
    Colin Scarato
    François Swiadek
    Christian Kraglund Andersen
    Christoph Hellings
    Sebastian Krinner
    Nathan Lacroix
    Stefania Lazar
    Michael Kerschbaum
    Dante Colao Zanuz
    Graham J. Norris
    Michael J. Hartmann
    Andreas Wallraff
    Christopher Eichler
    Nature Communications, 13
  • [47] Scalable quantum computing with atomic ensembles
    Barrett, Sean D.
    Rohde, Peter P.
    Stace, Thomas M.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [48] Towards scalable silicon quantum computing
    Vinet, M.
    Hutin, L.
    Bertrand, B.
    Barraud, S.
    Hartmann, J. -M.
    Kim, Y. -J.
    Mazzocchi, V.
    Amisse, A.
    Bohuslavskyi, H.
    Bourdet, L.
    Crippa, A.
    Jehl, X.
    Maurand, R.
    Niquet, Y. -M.
    Sanquer, M.
    Venitucci, B.
    Jadot, B.
    Chanrion, E.
    Mortemousque, P. -A.
    Spence, C.
    Urdampilleta, M.
    De Franceschi, S.
    Meunier, T.
    2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2018,
  • [49] The Path to Scalable Distributed Quantum Computing
    Van Meter, Rodney
    Devitt, Simon J.
    COMPUTER, 2016, 49 (09) : 31 - 42
  • [50] Scalable manufacturing processes for quantum computing
    Nature Electronics, 2022, 5 : 201 - 202