Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor

被引:80
|
作者
Hashim, Akel [1 ,2 ,3 ]
Naik, Ravi K. [1 ,3 ]
Morvan, Alexis [1 ,3 ]
Ville, Jean-Loup [1 ]
Mitchell, Bradley [1 ,3 ]
Kreikebaum, John Mark [1 ,4 ,10 ]
Davis, Marc [3 ]
Smith, Ethan [3 ]
Iancu, Costin [3 ]
O'Brien, Kevin P. [5 ]
Hincks, Ian [6 ,7 ]
Wallman, Joel J. [6 ,7 ,8 ,9 ]
Emerson, Joseph [6 ,7 ,8 ,9 ]
Siddiqi, Irfan [1 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02142 USA
[6] Quantum Benchmark Inc, Kitchener, ON N2H 5G5, Canada
[7] Keysight Technol Canada, Kanata, ON K2K 2W5, Canada
[8] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[9] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[10] Google Quantum AI, Mountain View, CA USA
关键词
ALGORITHMS;
D O I
10.1103/PhysRevX.11.041039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum (NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a coherent form of error that has no classical analog. Coherent errors severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors and therefore do not reliably predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these performance limitations by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict algorithm performance using experimentally measured error rates. Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A universal quantum information processor for scalable quantum communication and networks
    Xihua Yang
    Bolin Xue
    Junxiang Zhang
    Shiyao Zhu
    Scientific Reports, 4
  • [22] Scalable quantum computing in diamond
    Hemmer, Philip
    Wrachtrup, Jerog
    Jelezko, Fedor
    Tamarat, Philippe
    Prawer, Steven
    Lukin, Mikhail
    ADVANCED OPTICAL AND QUANTUM MEMORIES AND COMPUTING IV, 2007, 6482
  • [23] Lindblad Tomography of a Superconducting Quantum Processor
    Samach, Gabriel O.
    Greene, Ami
    Borregaard, Johannes
    Christandl, Matthias
    Barreto, Joseph
    Kim, David K.
    McNally, Christopher M.
    Melville, Alexander
    Niedzielski, Bethany M.
    Sung, Youngkyu
    Rosenberg, Danna
    Schwartz, Mollie E.
    Yoder, Jonilyn L.
    Orlando, Terry P.
    Wang, Joel I-Jan
    Gustavsson, Simon
    Kjaergaard, Morten
    Oliver, William D.
    PHYSICAL REVIEW APPLIED, 2022, 18 (06):
  • [24] An Experimental Microarchitecture for a Superconducting Quantum Processor
    Fu, X.
    Rol, M. A.
    Bultink, C. C.
    van Someren, J.
    Khammassi, N.
    Ashraf, I.
    Vermeulen, R. F. L.
    de Sterke, J. C.
    Vlothuizen, W. J.
    Schouten, R. N.
    Almudever, C. G.
    DiCarlo, L.
    Bertels, K.
    50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, : 813 - 825
  • [25] HiSEP-Q: A Highly Scalable and Efficient Quantum Control Processor for Superconducting Qubits
    Guo, Xiaorang
    Qin, Kun
    Schulz, Martin
    2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2023, : 86 - 93
  • [26] Improved quantum error correction with randomized compiling
    Jain, Aditya
    Iyer, Pavithran
    Bartlett, Stephen D.
    Emerson, Joseph
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [27] Braiding fractional quantum Hall quasiholes on a superconducting quantum processor
    Kirmani, Ammar
    Wang, Derek S.
    Ghaemi, Pouyan
    Rahmani, Armin
    PHYSICAL REVIEW B, 2023, 108 (06)
  • [28] Analyzing the performance of variational quantum factoring on a superconducting quantum processor
    Karamlou, Amir H.
    Simon, William A.
    Katabarwa, Amara
    Scholten, Travis L.
    Peropadre, Borja
    Cao, Yudong
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [29] Quantum computation with universal error mitigation on a superconducting quantum processor
    Song, Chao
    Cui, Jing
    Wang, H.
    Hao, J.
    Feng, H.
    Li, Ying
    SCIENCE ADVANCES, 2019, 5 (09):
  • [30] Strong Quantum Computational Advantage Using a Superconducting Quantum Processor
    Wu, Yulin
    Bao, Wan-Su
    Cao, Sirui
    Chen, Fusheng
    Chen, Ming-Cheng
    Chen, Xiawei
    Chung, Tung-Hsun
    Deng, Hui
    Du, Yajie
    Fan, Daojin
    Gong, Ming
    Guo, Cheng
    Guo, Chu
    Guo, Shaojun
    Han, Lianchen
    Hong, Linyin
    Huang, He-Liang
    Huo, Yong-Heng
    Li, Liping
    Li, Na
    Li, Shaowei
    Li, Yuan
    Liang, Futian
    Lin, Chun
    Lin, Jin
    Qian, Haoran
    Qiao, Dan
    Rong, Hao
    Su, Hong
    Sun, Lihua
    Wang, Liangyuan
    Wang, Shiyu
    Wu, Dachao
    Xu, Yu
    Yan, Kai
    Yang, Weifeng
    Yang, Yang
    Ye, Yangsen
    Yin, Jianghan
    Ying, Chong
    Yu, Jiale
    Zha, Chen
    Zhang, Cha
    Zhang, Haibin
    Zhang, Kaili
    Zhang, Yiming
    Zhao, Han
    Zhao, Youwei
    Zhou, Liang
    Zhu, Qingling
    PHYSICAL REVIEW LETTERS, 2021, 127 (18)