Good Codes From Generalised Algebraic Geometry Codes

被引:3
|
作者
Jibril, Mubarak [1 ]
Tomlinson, Martin [1 ]
Ahmed, Mohammed Zaki [1 ]
Tjhai, Cen [1 ]
机构
[1] Univ Plymouth, Fac Technol, Sch Comp & Math, Plymouth PL4 8AA, Devon, England
关键词
LINEAR CODES; CURVES;
D O I
10.1109/ISIT.2010.5513687
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Algebraic geometry codes or Goppa codes are defined with places of degree one. In constructing generalised algebraic geometry codes places of higher degree are used. In this paper we present 41 new codes over F-16 which improve on the best known codes of the same length and rate. The construction method uses places of small degree with a technique originally published over 10 years ago for the construction of generalised algebraic geometry codes.
引用
收藏
页码:1130 / 1132
页数:3
相关论文
共 50 条
  • [21] Asymptotically Good Nonlinear Codes From Algebraic Curves
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 5991 - 5995
  • [22] Quantum error-correcting codes from algebraic geometry codes of Castle type
    Carlos Munuera
    Wanderson Tenório
    Fernando Torres
    Quantum Information Processing, 2016, 15 : 4071 - 4088
  • [23] Quantum codes from a new construction of self-orthogonal algebraic geometry codes
    Hernando, F.
    McGuire, G.
    Monserrat, F.
    Moyano-Fernández, J.J.
    Quantum Information Processing, 2020, 19 (04):
  • [24] Quantum error-correcting codes from algebraic geometry codes of Castle type
    Munuera, Carlos
    Tenorio, Wanderson
    Torres, Fernando
    QUANTUM INFORMATION PROCESSING, 2016, 15 (10) : 4071 - 4088
  • [25] Hard problems of algebraic geometry codes
    Cheng, Qi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) : 402 - 406
  • [26] Effective construction of algebraic geometry codes
    Hache, G
    LeBrigand, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1615 - 1628
  • [27] ON JUSTESEN'S ALGEBRAIC GEOMETRY CODES
    陆佩忠
    宋国文
    Journal of Electronics(China), 1993, (02) : 146 - 154
  • [28] On representations of algebraic-geometry codes
    Guruswami, V
    Sudan, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1610 - 1613
  • [29] On cyclic algebraic-geometry codes
    Cabana, Gustavo
    Chara, Maria
    Podesta, Ricardo
    Toledano, Ricardo
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 82
  • [30] Generalization of algebraic-geometry codes
    Natl Univ of Singapore, Singapore, Singapore
    IEEE Trans. Inf. Theory, 7 (2498-2501):