Good Codes From Generalised Algebraic Geometry Codes

被引:3
|
作者
Jibril, Mubarak [1 ]
Tomlinson, Martin [1 ]
Ahmed, Mohammed Zaki [1 ]
Tjhai, Cen [1 ]
机构
[1] Univ Plymouth, Fac Technol, Sch Comp & Math, Plymouth PL4 8AA, Devon, England
关键词
LINEAR CODES; CURVES;
D O I
10.1109/ISIT.2010.5513687
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Algebraic geometry codes or Goppa codes are defined with places of degree one. In constructing generalised algebraic geometry codes places of higher degree are used. In this paper we present 41 new codes over F-16 which improve on the best known codes of the same length and rate. The construction method uses places of small degree with a technique originally published over 10 years ago for the construction of generalised algebraic geometry codes.
引用
收藏
页码:1130 / 1132
页数:3
相关论文
共 50 条
  • [11] Algebraic geometry codes from polyhedral divisors
    Ilten, Nathan Owen
    Suess, Hendrik
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (07) : 734 - 756
  • [12] A note on authentication codes from algebraic geometry
    Vladut, SG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1342 - 1345
  • [13] Algebraic-geometry codes
    Blake, I
    Heegard, C
    Hoholdt, T
    Wei, V
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) : 2596 - 2618
  • [14] Algebraic geometry lattices and codes
    Tsfasman, MA
    ALGORITHMIC NUMBER THEORY, 1996, 1122 : 385 - 389
  • [15] An Introduction to Algebraic Geometry Codes
    Munuera, Carlos
    Olaya-Leon, Wilson
    ALGEBRA FOR SECURE AND RELIABLE COMMUNICATION MODELING, 2015, 642 : 87 - 117
  • [16] Repairing Algebraic Geometry Codes
    Jin, Lingfei
    Luo, Yuan
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 900 - 908
  • [17] Erasure List-Decodable Codes From Random and Algebraic Geometry Codes
    Ding, Yang
    Jin, Lingfei
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 3889 - 3894
  • [18] Algebraic-geometry codes, one-point codes, and evaluation codes
    Bras-Amoros, Maria
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 43 (2-3) : 137 - 145
  • [19] Algebraic-geometry codes, one-point codes, and evaluation codes
    Maria Bras-Amorós
    Designs, Codes and Cryptography, 2007, 43 : 137 - 145
  • [20] Quantum codes from a new construction of self-orthogonal algebraic geometry codes
    Hernando, F.
    McGuire, G.
    Monserrat, F.
    Moyano-Fernandez, J. J.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (04)