The optimal strong radius and optimal strong diameter of the Cartesian product graphs

被引:3
|
作者
Chen, Meirun [1 ]
Guo, Xiaofeng [2 ]
Zhai, Shaohui [1 ]
机构
[1] Xiamen Univ Technol, Dept Math & Phys, Xiamen 361024, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Cartesian product; Optimal strong diameter; Optimal strong radius; Strong diameter; Strong distance; Strong radius; OPTIMAL ORIENTATIONS; NETWORKS; CYCLES;
D O I
10.1016/j.aml.2010.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a strong digraph. The strong distance between two vertices u and v in D. denoted by sd(D)(u. v), is the minimum size (the number of arcs) of a strong subdigraph of D containing u and v. For a vertex v of D, the strong eccentricity se(u) is the strong distance between v and a vertex farthest from v. The minimum strong eccentricity among all vertices of D is the strong radius, denoted by srad(D), and the maximum strong eccentricity is the strong diameter, denoted by sdiam(D). The optimal strong radius (resp. strong diameter) srad(G) (resp. sdiam(G)) of a graph G is the minimum strong radius (resp. strong diameter) over all strong orientations of G. Juan et al. (2008) [Justie Su-Tzu Juan. Chun-Ming Huang, I-Fan Sun, The strong distance problem on the Cartesian product of graphs. Inform. Process. Lett. 107 (2008) 45-51] provided an upper and a lower bound for the optimal strong radius (resp. strong diameter) of the Cartesian products of any two connected graphs. In this work, we determine the exact value of the optimal strong radius of the Cartesian products of two connected graphs and a new upper bound for the optimal strong diameter. Furthermore, these results are also generalized to the Cartesian products of any n (n > 2) connected graphs. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:657 / 660
页数:4
相关论文
共 50 条
  • [41] On the monophonic sets of the strong product graphs
    Chandran, S. V. Ullas
    Santhakumaran, A. P.
    ARS COMBINATORIA, 2017, 132 : 219 - 229
  • [42] The Menger number of the strong product of graphs
    Abajo, E.
    Casablanca, R. M.
    Dianez, A.
    Garcia-Vazquez, P.
    DISCRETE MATHEMATICS, 2013, 313 (13) : 1490 - 1495
  • [43] Weak reconstruction of strong product graphs
    Zmazek, Blaz
    Zerovnik, Janez
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 641 - 649
  • [44] Gromov hyperbolicity in strong product graphs
    Carballosa, Walter
    Casablanca, Rocio M.
    de la Cruz, Amauris
    Rodriguez, Jose M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [45] WIENER INDEX OF STRONG PRODUCT OF GRAPHS
    Peterin, Iztok
    Pletersek, Petra Zigert
    OPUSCULA MATHEMATICA, 2018, 38 (01) : 81 - 94
  • [46] Average distance in the strong product of graphs
    Casablanca, Rocio M.
    Favaron, Odile
    Kouider, Mekkia
    UTILITAS MATHEMATICA, 2014, 94 : 31 - 48
  • [47] Strong orientations of complete k-partite graphs achieving the strong diameter
    Miao, Huifang
    Lin, Guoping
    INFORMATION PROCESSING LETTERS, 2010, 110 (06) : 206 - 210
  • [48] Strong Equitable Vertex Arboricity in Cartesian Product Networks
    Guo, Zhiwei
    Mao, Yaping
    Jia, Nan
    Li, He
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (02)
  • [49] Strong Optimal Classification Trees
    Aghaei, Sina
    Gomez, Andres
    Vayanos, Phebe
    OPERATIONS RESEARCH, 2024,
  • [50] Optimal codes for strong identification
    Laihonen, T
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (03) : 307 - 313