The optimal strong radius and optimal strong diameter of the Cartesian product graphs

被引:3
|
作者
Chen, Meirun [1 ]
Guo, Xiaofeng [2 ]
Zhai, Shaohui [1 ]
机构
[1] Xiamen Univ Technol, Dept Math & Phys, Xiamen 361024, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Cartesian product; Optimal strong diameter; Optimal strong radius; Strong diameter; Strong distance; Strong radius; OPTIMAL ORIENTATIONS; NETWORKS; CYCLES;
D O I
10.1016/j.aml.2010.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a strong digraph. The strong distance between two vertices u and v in D. denoted by sd(D)(u. v), is the minimum size (the number of arcs) of a strong subdigraph of D containing u and v. For a vertex v of D, the strong eccentricity se(u) is the strong distance between v and a vertex farthest from v. The minimum strong eccentricity among all vertices of D is the strong radius, denoted by srad(D), and the maximum strong eccentricity is the strong diameter, denoted by sdiam(D). The optimal strong radius (resp. strong diameter) srad(G) (resp. sdiam(G)) of a graph G is the minimum strong radius (resp. strong diameter) over all strong orientations of G. Juan et al. (2008) [Justie Su-Tzu Juan. Chun-Ming Huang, I-Fan Sun, The strong distance problem on the Cartesian product of graphs. Inform. Process. Lett. 107 (2008) 45-51] provided an upper and a lower bound for the optimal strong radius (resp. strong diameter) of the Cartesian products of any two connected graphs. In this work, we determine the exact value of the optimal strong radius of the Cartesian products of two connected graphs and a new upper bound for the optimal strong diameter. Furthermore, these results are also generalized to the Cartesian products of any n (n > 2) connected graphs. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:657 / 660
页数:4
相关论文
共 50 条
  • [31] On the strong metric dimension of Cartesian and direct products of graphs
    Rodriguez-Velazquez, Juan A.
    Yero, Ismael G.
    Kuziak, Dorota
    Oellermann, Ortrud R.
    DISCRETE MATHEMATICS, 2014, 335 : 8 - 19
  • [32] Optimal oriented diameter of graphs with diameter 3
    Wang, Xiaolin
    Chen, Yaojun
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 374 - 388
  • [33] On optimal orientations of Cartesian products of graphs (I)
    Koh, KM
    Tay, EG
    DISCRETE MATHEMATICS, 1998, 190 (1-3) : 115 - 136
  • [34] On average connectivity of the strong product of graphs
    Abajo, E.
    Casablanca, R. M.
    Dianez, A.
    Garcia-Vazquez, P.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2795 - 2801
  • [35] THE SUBSET-STRONG PRODUCT OF GRAPHS
    Eliasi, Mehdi
    ANNALES MATHEMATICAE SILESIANAE, 2024, 38 (02) : 241 - 262
  • [36] The metric dimension of strong product graphs
    Rodriguez-Velazquez, Juan A.
    Kuziak, Dorota
    Yero, Ismael G.
    Sigarreta, Jose M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (02) : 261 - 268
  • [37] Establishing strong connectivity using optimal radius half-disk antennas
    Aloupis, Greg
    Damian, Mirela
    Flatland, Robin
    Korman, Matias
    Oezkan, Oezguer
    Rappaport, David
    Wuhrer, Stefanie
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (03): : 328 - 339
  • [38] Toll number of the strong product of graphs
    Gologranc, Tanja
    Repolusk, Polona
    DISCRETE MATHEMATICS, 2019, 342 (03) : 807 - 814
  • [39] On strong geodeticity in the lexicographic product of graphs
    Gajavalli, S.
    Greeni, A. Berin
    AIMS MATHEMATICS, 2024, 9 (08): : 20367 - 20389
  • [40] The Strong Product of Graphs and Crossing Numbers
    Ouyang, Zhangdong
    Wang, Jing
    Huang, Yuanqiu
    ARS COMBINATORIA, 2018, 137 : 141 - 147