GOAL-ORIENTED LOCAL A POSTERIORI ERROR ESTIMATORS FOR H(div) LEAST-SQUARES FINITE ELEMENT METHODS

被引:4
|
作者
Cai, Zhiqiang [1 ]
Ku, Jaeun [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
finite element methods; a posteriori error estimates; least-squares method; ADAPTIVE-CONTROL;
D O I
10.1137/110822682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a goal-oriented, local a posteriori error estimator for H(div) least-squares (LS) finite element methods. Our main interest is to develop an a posteriori error estimator for the flux approximation in a preassigned region of interest D subset of Omega. The estimator is obtained from the LS functional by scaling residuals with proper weight coefficients. The weight coefficients are given in terms of local mesh size h(T) and a function omega(D) depending on the distance to D. This new error estimator measures the pollution effect from the outside region of D and provides a basis for local refinement in order to efficiently approximate the solution in D. Numerical experiments show superior performances of our goal-oriented a posteriori estimators over the standard LS functional and global error estimators.
引用
收藏
页码:2564 / 2575
页数:12
相关论文
共 50 条
  • [31] A posteriori error estimators for mixed finite element methods in linear elasticity
    Marco Lonsing
    Rüdiger Verfürth
    Numerische Mathematik, 2004, 97 : 757 - 778
  • [32] A posteriori error estimators for mixed finite element methods in linear elasticity
    Lonsing, M
    Verfürth, R
    NUMERISCHE MATHEMATIK, 2004, 97 (04) : 757 - 778
  • [33] Least-squares mixed finite element methods for the RLW equations
    Gu, Haiming
    Chen, Ning
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 749 - 758
  • [34] Nonconforming elements in least-squares mixed finite element methods
    Duan, HY
    Liang, GP
    MATHEMATICS OF COMPUTATION, 2004, 73 (245) : 1 - 18
  • [35] Goal-oriented adaptive finite element methods with optimal computational complexity
    Becker, Roland
    Gantner, Gregor
    Innerberger, Michael
    Praetorius, Dirk
    NUMERISCHE MATHEMATIK, 2023, 153 (01) : 111 - 140
  • [36] Computation of goal-oriented a posteriori error measures in space-time finite elements for viscoplasticity
    Larsson, F
    Runesson, K
    Hansbo, P
    TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS, 2001, : 499 - 510
  • [37] Goal-oriented adaptive finite element methods with optimal computational complexity
    Roland Becker
    Gregor Gantner
    Michael Innerberger
    Dirk Praetorius
    Numerische Mathematik, 2023, 153 : 111 - 140
  • [38] Goal-oriented adaptive finite element methods for elliptic problems revisited
    Buerg, Markus
    Nazarov, Murtazo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 : 125 - 147
  • [39] Efficient goal-oriented global error estimators for BDF methods using discrete adjoints
    Jando, Deorte
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 195 - 212
  • [40] Convergence of goal-oriented adaptive finite element methods for semilinear problems
    Holst, Michael
    Pollock, Sara
    Zhu, Yunrong
    COMPUTING AND VISUALIZATION IN SCIENCE, 2015, 17 (01) : 43 - 63