GOAL-ORIENTED LOCAL A POSTERIORI ERROR ESTIMATORS FOR H(div) LEAST-SQUARES FINITE ELEMENT METHODS

被引:4
|
作者
Cai, Zhiqiang [1 ]
Ku, Jaeun [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
finite element methods; a posteriori error estimates; least-squares method; ADAPTIVE-CONTROL;
D O I
10.1137/110822682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a goal-oriented, local a posteriori error estimator for H(div) least-squares (LS) finite element methods. Our main interest is to develop an a posteriori error estimator for the flux approximation in a preassigned region of interest D subset of Omega. The estimator is obtained from the LS functional by scaling residuals with proper weight coefficients. The weight coefficients are given in terms of local mesh size h(T) and a function omega(D) depending on the distance to D. This new error estimator measures the pollution effect from the outside region of D and provides a basis for local refinement in order to efficiently approximate the solution in D. Numerical experiments show superior performances of our goal-oriented a posteriori estimators over the standard LS functional and global error estimators.
引用
收藏
页码:2564 / 2575
页数:12
相关论文
共 50 条
  • [21] Goal-oriented error estimation and adaptivity for the finite element method
    Oden, JT
    Prudhomme, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (5-6) : 735 - 756
  • [22] Exact a posteriori error analysis of the least squares finite element method
    Liu, JL
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 116 (03) : 297 - 305
  • [23] Least-squares finite element methods for the elasticity problem
    Yang, SY
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) : 39 - 60
  • [24] LEAST-SQUARES FINITE ELEMENT METHODS FOR QUANTUM ELECTRODYNAMICS
    Brannick, J.
    Ketelsen, C.
    Manteuffel, T.
    McCormick, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 398 - 417
  • [25] Element-oriented and edge-oriented local error estimators for nonconforming finite element methods
    Hoppe, RHW
    Wohlmuth, B
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (02): : 237 - 263
  • [26] Error estimates for least squares finite element methods
    Bedivan, DM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (8-9) : 1003 - 1020
  • [27] WEIGHTED MARKING FOR GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHODS
    Becker, Roland
    Estecahandy, Elodie
    Trujillo, David
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2451 - 2469
  • [28] The norm of a discretized gradient in H(div)* for a posteriori finite element error analysis
    Carstensen, Carsten
    Peterseim, Daniel
    Schroeder, Andreas
    NUMERISCHE MATHEMATIK, 2016, 132 (03) : 519 - 539
  • [29] Goal-oriented error control of the iterative solution of finite element equations
    Meidner, D.
    Rannacher, R.
    Vihharev, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2009, 17 (02) : 143 - 172
  • [30] A weak Galerkin least-squares finite element method for div-curl systems
    Li, Jichun
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 363 : 79 - 86