Li and Yorke chaos with respect to the cardinality of the scrambled sets

被引:0
|
作者
Guirao, JLG [1 ]
Lampart, M
机构
[1] Univ Castilla La Mancha, Dept Math, Cuenca 16071, Spain
[2] Silesian Univ, Math Inst, Opava 74601, Czech Republic
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study Li and Yorke chaos on several spaces in connection with the cardinality of its scrambled sets. We prove that there is a map on a Cantor set and a map on a two-dimensional arcwise connected continuum (with empty interior) such that each scrambled set contains exactly two points. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1203 / 1206
页数:4
相关论文
共 50 条
  • [1] LI-YORKE CHAOS ALMOST EVERYWHERE: ON THE PERVASIVENESS OF DISJOINT EXTREMALLY SCRAMBLED SETS
    Deng, Liuchun
    Khan, M. Ali
    Rajan, Ashvin, V
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (01) : 132 - 143
  • [2] Li-Yorke's scrambled sets have measure 0
    Baba, Y
    Kubo, I
    Takahashi, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (10) : 1611 - 1612
  • [3] FOR GRAPH MAPS, ONE SCRAMBLED PAIR IMPLIES LI-YORKE CHAOS
    Ruette, Sylvie
    Snoha, L'Ubomir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2087 - 2100
  • [4] Stable sets and mean Li-Yorke chaos in positive entropy systems
    Huang, Wen
    Li, Jian
    Ye, Xiangdong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) : 3377 - 3394
  • [5] Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics
    Dai, Xiongping
    Tang, Xinjia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5521 - 5553
  • [6] Li-Yorke sensitivity does not imply Li-Yorke chaos
    Hantakova, Jana
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 3066 - 3074
  • [7] Invariant scrambled sets and distributional chaos
    Oprocha, Piotr
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01): : 31 - 43
  • [8] LI-YORKE CHAOS FOR DENDRITE MAPS WITH ZERO TOPOLOGICAL ENTROPY AND ω-LIMIT SETS
    Askri, Ghassen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 2957 - 2976
  • [9] Sensitivity, Devaney's chaos and Li-Yorke ε-chaos
    Wang, Huoyun
    Liu, Qing
    Li, Huahai
    Fu, Heman
    SEMIGROUP FORUM, 2020, 100 (03) : 888 - 909
  • [10] Perturbed Li-Yorke homoclinic chaos
    Akhmet, Marat
    Feckan, Michal
    Fen, Mehmet Onur
    Kashkynbayev, Ardak
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (75) : 1 - 18