LI-YORKE CHAOS ALMOST EVERYWHERE: ON THE PERVASIVENESS OF DISJOINT EXTREMALLY SCRAMBLED SETS

被引:0
|
作者
Deng, Liuchun [1 ]
Khan, M. Ali [2 ]
Rajan, Ashvin, V [3 ]
机构
[1] Yale NUS Coll, Social Sci Div, Singapore, Singapore
[2] Johns Hopkins Univ, Dept Econ, Baltimore, MD 21218 USA
[3] 3935 Cloverhill Rd, Baltimore, MD 21218 USA
关键词
scrambled set; externally scrambled set; Smith-Volterra-Cantor set; Lebesgue measure; Li-Yorke chaos; topological chaos;
D O I
10.1017/S0004972722000144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there exists a continuous function from the unit Lebesgue interval to itself such that for any epsilon >= 0 and any natural number k, any point in its domain has an epsilon-neighbourhood which, when feasible, contains k mutually disjoint extremally scrambled sets of identical Lebesgue measure, homeomorphic to each other. This result enables a satisfying generalisation of Li-Yorke (topological) chaos and suggests an open (difficult) problem as to whether the result is valid for piecewise linear functions.
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
  • [1] Li-Yorke's scrambled sets have measure 0
    Baba, Y
    Kubo, I
    Takahashi, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (10) : 1611 - 1612
  • [2] Li and Yorke chaos with respect to the cardinality of the scrambled sets
    Guirao, JLG
    Lampart, M
    CHAOS SOLITONS & FRACTALS, 2005, 24 (05) : 1203 - 1206
  • [3] FOR GRAPH MAPS, ONE SCRAMBLED PAIR IMPLIES LI-YORKE CHAOS
    Ruette, Sylvie
    Snoha, L'Ubomir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2087 - 2100
  • [4] Li-Yorke sensitivity does not imply Li-Yorke chaos
    Hantakova, Jana
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 3066 - 3074
  • [5] Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics
    Dai, Xiongping
    Tang, Xinjia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5521 - 5553
  • [6] Li-Yorke chaos in the system with impacts
    Akhmet, M. U.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 804 - 810
  • [7] Perturbed Li-Yorke homoclinic chaos
    Akhmet, Marat
    Feckan, Michal
    Fen, Mehmet Onur
    Kashkynbayev, Ardak
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (75) : 1 - 18
  • [8] Li-Yorke chaos of translation semigroups
    Wu, Xinxing
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (01) : 49 - 57
  • [9] Stable sets and mean Li-Yorke chaos in positive entropy systems
    Huang, Wen
    Li, Jian
    Ye, Xiangdong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) : 3377 - 3394
  • [10] Li-Yorke chaos in linear dynamics
    Bernardes, N. C., Jr.
    Bonilla, A.
    Mueller, V.
    Peris, A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1723 - 1745