Li and Yorke chaos with respect to the cardinality of the scrambled sets

被引:0
|
作者
Guirao, JLG [1 ]
Lampart, M
机构
[1] Univ Castilla La Mancha, Dept Math, Cuenca 16071, Spain
[2] Silesian Univ, Math Inst, Opava 74601, Czech Republic
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study Li and Yorke chaos on several spaces in connection with the cardinality of its scrambled sets. We prove that there is a map on a Cantor set and a map on a two-dimensional arcwise connected continuum (with empty interior) such that each scrambled set contains exactly two points. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1203 / 1206
页数:4
相关论文
共 50 条
  • [31] ON THE EXISTENCE OF LI-YORKE POINTS IN THE THEORY OF CHAOS
    BHATIA, NP
    EGERLAND, WO
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (06) : 541 - 545
  • [32] Mean Li-Yorke chaos in Banach spaces
    Bernardes, N. C., Jr.
    Bonilla, A.
    Peris, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
  • [33] Relations between distributional, Li-Yorke and ω chaos
    Guirao, JLG
    Lampart, M
    CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 788 - 792
  • [34] DC3 and Li-Yorke chaos
    Wang, Hui
    Lei, Fengchun
    Wang, Lidong
    APPLIED MATHEMATICS LETTERS, 2014, 31 : 29 - 33
  • [35] Li-Yorke混沌Chaos及其动力特征
    王林山
    西北建筑工程学院学报, 1996, (03) : 89 - 92+94
  • [36] Chaos in the sense of Li-Yorke in coupled map lattices
    Tian, Chuanjun
    Chen, Guanrong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 376 (246-252) : 246 - 252
  • [37] Li-Yorke chaos for invertible mappings on noncompact spaces
    Hou, Bingzhe
    Luo, Lvlin
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (02) : 411 - 416
  • [38] Mean Li–Yorke chaos along some good sequences
    Jian Li
    Yixiao Qiao
    Monatshefte für Mathematik, 2018, 186 : 153 - 173
  • [39] Li–Yorke chaos for invertible mappings on compact metric spaces
    Lvlin Luo
    Bingzhe Hou
    Archiv der Mathematik, 2017, 108 : 65 - 69
  • [40] DEVANEY CHAOS AND LI-YORKE SENSITIVITY FOR PRODUCT SYSTEMS
    Wu, Xinxing
    Zhu, Peiyong
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (04) : 538 - 548