K4-free subgraphs of random graphs revisited

被引:9
|
作者
Gerke, S. [1 ]
Proemel, H. J.
Schickinger, T.
Steger, A.
Taraz, A.
机构
[1] ETH, Inst Theoret Informat, CH-8092 Zurich, Switzerland
[2] Tech Univ Munich, Inst Informat, D-85747 Munich, Germany
[3] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
[4] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
关键词
TURANS EXTREMAL PROBLEM; SPARSE RANDOM GRAPHS; CYCLES; THEOREM; NUMBER;
D O I
10.1007/s00493-007-2010-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Combinatorica 17(2), 1997, Kohayakawa, Luczak and Rodl state a conjecture which has several implications for random graphs. If the conjecture is true, then, for example, an application of a version of Szemeredi's regularity lemma for sparse graphs yields an estimation of the maximal number of edges in an H-free subgraph of a random graph G(n,p). In fact, the conjecture may be seen as a probabilistic embedding lemma for partitions guaranteed by a version of Szemeredi's regularity lemma for sparse graphs. In this paper we verify the conjecture for H = K-4, thereby providing a conceptually simple proof for the main result in the paper cited above.
引用
收藏
页码:329 / 365
页数:37
相关论文
共 50 条
  • [41] Solitary subgraphs of random graphs
    Kurkowiak, J
    Rucinski, A
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 195 - 209
  • [42] EXTREMAL SUBGRAPHS OF RANDOM GRAPHS
    BABAI, L
    SIMONOVITS, M
    SPENCER, J
    JOURNAL OF GRAPH THEORY, 1990, 14 (05) : 599 - 622
  • [43] On Extremal Subgraphs of Random Graphs
    Brightwell, Graham
    Panagiotou, Konstantinos
    Steger, Angelika
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 477 - +
  • [44] SPANNING SUBGRAPHS OF RANDOM GRAPHS
    ALON, N
    FUREDI, Z
    GRAPHS AND COMBINATORICS, 1992, 8 (01) : 91 - 94
  • [45] RANDOM SUBGRAPHS IN SPARSE GRAPHS
    Joos, Felix
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 2350 - 2360
  • [46] RANDOM SUBGRAPHS OF REGULAR GRAPHS
    QUINTAS, LV
    LECTURE NOTES IN MATHEMATICS, 1984, 1073 : 150 - 160
  • [47] Dense subgraphs in random graphs
    Balister, Paul
    Bollobas, Bela
    Sahasrabudhe, Julian
    Veremyev, Alexander
    DISCRETE APPLIED MATHEMATICS, 2019, 260 : 66 - 74
  • [48] Spanning subgraphs of random graphs
    Riordan, O
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (02): : 125 - 148
  • [49] The maximum number of triangles in a K4-free graph
    Eckhoff, J
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 95 - 106
  • [50] When does the K4-free process stop?
    Warnke, Lutz
    RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (03) : 355 - 397