K4-free subgraphs of random graphs revisited

被引:9
|
作者
Gerke, S. [1 ]
Proemel, H. J.
Schickinger, T.
Steger, A.
Taraz, A.
机构
[1] ETH, Inst Theoret Informat, CH-8092 Zurich, Switzerland
[2] Tech Univ Munich, Inst Informat, D-85747 Munich, Germany
[3] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
[4] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
关键词
TURANS EXTREMAL PROBLEM; SPARSE RANDOM GRAPHS; CYCLES; THEOREM; NUMBER;
D O I
10.1007/s00493-007-2010-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Combinatorica 17(2), 1997, Kohayakawa, Luczak and Rodl state a conjecture which has several implications for random graphs. If the conjecture is true, then, for example, an application of a version of Szemeredi's regularity lemma for sparse graphs yields an estimation of the maximal number of edges in an H-free subgraph of a random graph G(n,p). In fact, the conjecture may be seen as a probabilistic embedding lemma for partitions guaranteed by a version of Szemeredi's regularity lemma for sparse graphs. In this paper we verify the conjecture for H = K-4, thereby providing a conceptually simple proof for the main result in the paper cited above.
引用
收藏
页码:329 / 365
页数:37
相关论文
共 50 条
  • [21] On the Number of Edge-Disjoint Triangles in K4-Free Graphs
    Ervin Győri
    Balázs Keszegh
    Combinatorica, 2017, 37 : 1113 - 1124
  • [22] Triangle-Free Subgraphs of Random Graphs
    Allen, Peter
    Bottcher, Julia
    Kohayakawa, Yoshiharu
    Roberts, Barnaby
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (02): : 141 - 161
  • [23] K4-Free Graphs with No Odd Hole: Even Pairs and the Circular Chromatic Number
    Zwols, Yori
    JOURNAL OF GRAPH THEORY, 2010, 65 (04) : 303 - 322
  • [24] On random k-out subgraphs of large graphs
    Frieze, Alan
    Johansson, Tony
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (02) : 143 - 157
  • [25] K4-free and (C)over-bar6-free Planar Matching Covered Graphs
    Kothari, Nishad
    Murty, U. S. R.
    JOURNAL OF GRAPH THEORY, 2016, 82 (01) : 5 - 32
  • [26] On the threshold for k-regular subgraphs of random graphs
    Paweł Prałat
    Jacques Verstraëte
    Nicholas Wormald
    Combinatorica, 2011, 31 : 565 - 581
  • [27] On the threshold for k-regular subgraphs of random graphs
    Pralat, Pawel
    Verstraete, Jacques
    Wormald, Nicholas
    COMBINATORICA, 2011, 31 (05) : 565 - 581
  • [28] THE NUMBER OF TRIANGLES IN A K4-FREE GRAPH
    FISHER, DC
    DISCRETE MATHEMATICS, 1988, 69 (02) : 203 - 205
  • [29] Making a K4-free graph bipartite
    Sudakov, Benny
    COMBINATORICA, 2007, 27 (04) : 509 - 518
  • [30] SUBGRAPHS OF RANDOM GRAPHS
    FREMLIN, DH
    TALAGRAND, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (02) : 551 - 582