K4-free subgraphs of random graphs revisited

被引:9
|
作者
Gerke, S. [1 ]
Proemel, H. J.
Schickinger, T.
Steger, A.
Taraz, A.
机构
[1] ETH, Inst Theoret Informat, CH-8092 Zurich, Switzerland
[2] Tech Univ Munich, Inst Informat, D-85747 Munich, Germany
[3] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
[4] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
关键词
TURANS EXTREMAL PROBLEM; SPARSE RANDOM GRAPHS; CYCLES; THEOREM; NUMBER;
D O I
10.1007/s00493-007-2010-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Combinatorica 17(2), 1997, Kohayakawa, Luczak and Rodl state a conjecture which has several implications for random graphs. If the conjecture is true, then, for example, an application of a version of Szemeredi's regularity lemma for sparse graphs yields an estimation of the maximal number of edges in an H-free subgraph of a random graph G(n,p). In fact, the conjecture may be seen as a probabilistic embedding lemma for partitions guaranteed by a version of Szemeredi's regularity lemma for sparse graphs. In this paper we verify the conjecture for H = K-4, thereby providing a conceptually simple proof for the main result in the paper cited above.
引用
收藏
页码:329 / 365
页数:37
相关论文
共 50 条
  • [1] K4-free subgraphs of random graphs revisited
    S. Gerke
    H. J. Prömel
    T. Schickinger
    A. Steger
    A. Taraz
    Combinatorica, 2007, 27 : 329 - 365
  • [2] K4-free graphs without large induced triangle-free subgraphs
    Guy Wolfovitz
    Combinatorica, 2013, 33 : 623 - 631
  • [3] On K-4-free subgraphs of random graphs
    Kohayakawa, Y
    Luczak, T
    Rodl, V
    COMBINATORICA, 1997, 17 (02) : 173 - 213
  • [4] K4-free graphs with no odd holes
    Chudnovsky, Maria
    Robertson, Neil
    Seymour, Paul
    Thomas, Robin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 313 - 331
  • [5] Packing Triangles in K4-Free Graphs
    Shunchang Huang
    Lingsheng Shi
    Graphs and Combinatorics, 2014, 30 : 627 - 632
  • [6] Finite Groups with K4-Free Prime Graphs
    Akhlaghi, Zeinab
    Tong-Viet, Hung P.
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (01) : 235 - 256
  • [7] K5-free subgraphs of random graphs
    Gerke, S
    Schickinger, T
    Steger, A
    RANDOM STRUCTURES & ALGORITHMS, 2004, 24 (02) : 194 - 232
  • [8] Clique-inverse graphs of K3-free and K4-free graphs
    Protti, F
    Szwarcfiter, JL
    JOURNAL OF GRAPH THEORY, 2000, 35 (04) : 257 - 272
  • [9] Finite Groups with K4-Free Prime Graphs
    Zeinab Akhlaghi
    Hung P. Tong-Viet
    Algebras and Representation Theory, 2015, 18 : 235 - 256
  • [10] Clique roots of K4-free chordal graphs
    Faal, Hossein Teimoori
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2019, 7 (01) : 105 - 111