A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy

被引:58
|
作者
Edwards, Thomas H. [1 ]
Stoll, Stefan [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98103 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Inverse problem; Tikhonov regularization; MCMC; Statistical inference; DISTANCE MEASUREMENTS; PROTEIN STRUCTURES; ELDOR THEORY; SPIN-LABELS; RESONANCE; REVEALS; ACTIVATION; SPECTRA; BINDING; SERIES;
D O I
10.1016/j.jmr.2016.06.021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly between protein-bound spin labels separated by 1.5-8 nm. From the experimental data, a distance distribution P(r) is extracted using Tikhonov regularization. The disadvantage of this method is that it does not directly provide error bars for the resulting P(r), rendering correct interpretation difficult. Here we introduce a Bayesian statistical approach that quantifies uncertainty in P(r) arising from noise and numerical regularization. This method provides credible intervals (error bars) of P(r) at each r. This allows practitioners to answer whether or not small features are significant, whether or not apparent shoulders are significant, and whether or not two distance distributions are significantly different from each other. In addition, the method quantifies uncertainty in the regularization parameter. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [21] A bayesian network for quantifying uncertainty for distribution planning model
    Garcia, Humberto
    Ochoa-Zezzatti, Alberto
    Loera, Adrian
    DYNA, 2020, 95 (05): : 465 - 465
  • [22] Quantifying Uncertainty of Portfolios using Bayesian Neural Networks
    Esener, Suleyman
    Wegner, Enrico
    Almeida, Rui Jorge
    Basturk, Nalan
    Rodrigues, Paulo
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [23] Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture
    Lu, Juanwu
    Cui, Can
    Ma, Yunsheng
    Bera, Aniket
    Wang, Ziran
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 15428 - 15437
  • [24] Quantifying uncertainty in predictions using a Bayesian neural network
    Goh, ATC
    Chua, CG
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 292 - 294
  • [25] Bayesian focalization: Quantifying source localization with environmental uncertainty
    Dosso, Stan E.
    Wilmut, Michael J.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 121 (05): : 2567 - 2574
  • [26] The mFI-5 and Postoperative Outcomes in Brain Tumor Patients: A Bayesian Approach to Quantifying Uncertainty
    Jimenez, Adrian E.
    Porras, Jose L.
    Azad, Tej D.
    Luksik, Andrew S.
    Jackson, Christopher
    Bettegowda, Chetan
    Weingart, Jon
    Brem, Henry
    Mukherjee, Debraj
    WORLD NEUROSURGERY, 2023, 177 : E716 - E731
  • [27] A BAYESIAN APPROACH FOR MEASUREMENTS OF STRAY NEUTRONS AT PROTON THERAPY FACILITIES: QUANTIFYING NEUTRON DOSE UNCERTAINTY
    Dommert, M.
    Reginatto, M.
    Zboril, M.
    Fiedler, F.
    Helmbrecht, S.
    Enghardt, W.
    Lutz, B.
    RADIATION PROTECTION DOSIMETRY, 2018, 180 (1-4) : 319 - 323
  • [28] A Bayesian approach to uncertainty aversion
    Halevy, Y
    Feltkamp, V
    REVIEW OF ECONOMIC STUDIES, 2005, 72 (02): : 449 - 466
  • [29] An approach to quantifying the efficiency of a Bayesian filter
    Nearing, Grey S.
    Gupta, Hoshin V.
    Crow, Wade T.
    Gong, Wei
    WATER RESOURCES RESEARCH, 2013, 49 (04) : 2164 - 2173
  • [30] Quantifying uncertainty for remote spectroscopy of surface composition
    Thompson, David R.
    Braverman, Amy
    Brodrick, Philip G.
    Candela, Alberto
    Carmon, Nimrod
    Clark, Roger N.
    Connelly, David
    Green, Robert O.
    Kokaly, Raymond F.
    Li, Longlei
    Mahowald, Natalie
    Miller, Ronald L.
    Okin, Gregory S.
    Painter, Thomas H.
    Swayze, Gregg A.
    Turmon, Michael
    Susilouto, Jouni
    Wettergreen, David S.
    REMOTE SENSING OF ENVIRONMENT, 2020, 247