Deep Learning Based Approach Implemented to Image Super-Resolution

被引:4
|
作者
Thuong Le-Tien [1 ]
Tuan Nguyen-Thanh
Hanh-Phan Xuan
Giang Nguyen-Truong
Vinh Ta-Quoc
机构
[1] Ho Chi Minh City Univ Technol HCMUT, 268 Ly Thuong Kiet St,Dist 10, Ho Chi Minh City, Vietnam
关键词
image super-resolution; deep learning; inverse problems; Residual in Residual Dense Network (RRDN); Generative Adversarial Network (GAN); Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN);
D O I
10.12720/jait.11.4.209-216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this research is about application of deep learning approach to the inverse problem, which is one of the most popular issues that has been concerned for many years about, the image Super-Resolution (SR). From then on, many fields of machine learning and deep learning have gained a lot of momentum in solving such imaging problems. In this article, we review the deep-learning techniques for solving the image super-resolution especially about the Generative Adversarial Network (GAN) technique and discuss other ways to use the GAN for an efficient solution on the task. More specifically, we review about the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) and Residual in Residual Dense Network (RRDN) that are introduced by 'idealo' team and evaluate their results for image SR, they had generated precise results that gained the high rank on the leader board of state-of-the-art techniques with many other datasets like Set5, Set14 or DIV2K, etc. To be more specific, we will also review the Single-Image Super-Resolution using Generative Adversarial Network (SRGAN) and the Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), two famous state-of-the-art techniques, by re-train the proposed model with different parameter and comparing with their result. So that can be helping us understand the working of announced model and the different when we choose others parameter compared to theirs.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
  • [31] A deep learning method for image super-resolution based on geometric similarity
    Lu, Jian
    Hu, Weidong
    Sun, Yi
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 70 : 210 - 219
  • [32] Review on Deep Learning Based Image Super-resolution Restoration Algorithms
    Sun X.
    Li X.-G.
    Li J.-F.
    Zhuo L.
    Li, Xiao-Guang (lxg@bjut.edu.cn), 1600, Science Press (43): : 697 - 709
  • [33] A review of single image super-resolution reconstruction based on deep learning
    Ming Yu
    Jiecong Shi
    Cuihong Xue
    Xiaoke Hao
    Gang Yan
    Multimedia Tools and Applications, 2024, 83 : 55921 - 55962
  • [34] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [35] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [36] Learning Deep Analysis Dictionaries for Image Super-Resolution
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6633 - 6648
  • [37] Deep Learning for Image/Video Restoration and Super-resolution
    Tekalp, A. Murat
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2022, 13 (01): : 1 - 110
  • [38] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [39] Deep Bilateral Learning for Stereo Image Super-Resolution
    Xu, Qingyu
    Wang, Longguang
    Wang, Yingqian
    Sheng, Weidong
    Deng, Xinpu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 613 - 617
  • [40] Deep learning based speckle image super-resolution for digital image correlation measurement
    Wang, Lianpo
    Lei, Zhaoyang
    OPTICS AND LASER TECHNOLOGY, 2025, 181