Deep Bilateral Learning for Stereo Image Super-Resolution

被引:32
|
作者
Xu, Qingyu [1 ]
Wang, Longguang [1 ]
Wang, Yingqian [1 ]
Sheng, Weidong [1 ]
Deng, Xinpu [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Superresolution; Training; Convolution; Kernel; Task analysis; Spatial resolution; Bilateral filter; recursive; stereo image; super-resolution;
D O I
10.1109/LSP.2021.3066125
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bilateral filter has demonstrated its effectiveness in many traditional methods for image restoration tasks. In this letter, we incorporate the idea of bilateral grid processing in a CNN framework and propose a bilateral stereo super-resolution network (BSSRnet). Specifically, we use a parallax-attention module to incorporate information from left and right views to learn content-aware bilateral filters. Then, these bilateral filters are used to recover missing details at different spatial locations while preserving stereo consistency. Our network is fully differentiable and is robust to both content and disparity variations. Comparative results show that our BSSRnet achieves state-of-the-art performance on the Flickr1024, Middlebury, KITTI 2012 and KITTI 2015 datasets. Source code is available at.
引用
收藏
页码:613 / 617
页数:5
相关论文
共 50 条
  • [1] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [2] Learning Parallax Attention for Stereo Image Super-Resolution
    Wang, Longguang
    Wang, Yingqian
    Liang, Zhengfa
    Lin, Zaiping
    Yang, Jungang
    An, Wei
    Guo, Yulan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12242 - 12251
  • [3] Deep Learning for Image Super-Resolution: A Survey
    Wang, Zhihao
    Chen, Jian
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3365 - 3387
  • [4] Advanced deep learning for image super-resolution
    Shamsolmoali, Pourya
    Sadka, Abdul Hamid
    Zhou, Huiyu
    Yang, Wankou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 82
  • [5] Stereo Image Super-Resolution: A Survey
    Wang Yingqian
    Wang Longguang
    Liang Zhengyu
    An Wei
    Yang Jungang
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (18)
  • [6] Learning accurate and enriched features for stereo image super-resolution
    Gao, Hu
    Dang, Depeng
    PATTERN RECOGNITION, 2025, 159
  • [7] A Stereo Attention Module for Stereo Image Super-Resolution
    Ying, Xinyi
    Wang, Yingqian
    Wang, Longguang
    Sheng, Weidong
    An, Wei
    Guo, Yulan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 496 - 500
  • [8] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [9] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [10] Learning Deep Analysis Dictionaries for Image Super-Resolution
    Huang, Jun-Jie
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6633 - 6648