Relative equilibria of point vortices on the sphere

被引:65
|
作者
Lim, C [1 ]
Montaldi, J
Roberts, M
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Inst Nonlineaire Nice, UMR CNRS 6618, F-06560 Valbonne, France
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
point vortices; symmetry; first integrals; flow on a sphere;
D O I
10.1016/S0167-2789(00)00167-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of many different symmetry types of relative equilibria for systems of identical point vortices on a non-rotating sphere. The proofs use the rotational symmetry group SO(3) and the resulting conservation laws, the time-reversing reflectional symmetries in O(3), and the finite symmetry group of permutations of identical vortices. Results include both global existence theorems and local results on bifurcations from equilibria. A more detailed study is made of relative equilibria which consist of two parallel rings with n vortices in each rotating about a common axis. The paper ends with discussions of the bifurcation diagrams for systems of 3-6 identical vortices. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 135
页数:39
相关论文
共 50 条
  • [41] Shape dynamics of N point vortices on the sphere
    Ohsawa, Tomoki
    NONLINEARITY, 2023, 36 (02) : 1000 - 1028
  • [42] Bifurcation of Relative Equilibria for Vortices and General Homogeneous Potentials
    Ernesto Pérez-Chavela
    Manuele Santoprete
    Claudia Tamayo
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [43] Bifurcation of Relative Equilibria for Vortices and General Homogeneous Potentials
    Perez-Chavela, Ernesto
    Santoprete, Manuele
    Tamayo, Claudia
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [44] Dynamics of a Circular Foil and Two Pairs of Point Vortices: New Relative Equilibria and a Generalization of Helmholtz Leapfrogging
    Bizyaev, Ivan A.
    Mamaev, Ivan S.
    SYMMETRY-BASEL, 2023, 15 (03):
  • [45] Point vortices dynamics on a rotating sphere and modeling of global atmospheric vortices interaction
    Mokhov, Igor I.
    Chefranov, Sergey G.
    Chefranov, Alexander G.
    PHYSICS OF FLUIDS, 2020, 32 (10)
  • [46] A new integrable problem of motion of point vortices on the sphere
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 39 - +
  • [47] Explicit, parallel Poisson integration of point vortices on the sphere
    Myerscough, Keith W.
    Frank, Jason
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 304 : 100 - 119
  • [48] STABILITY OF RELATIVE EQUILIBRIA IN THE PROBLEM OF N+1 VORTICES
    Cabral, H. E.
    Schmidt, D. S.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (02) : 231 - 250
  • [49] Fixed equilibria of point vortices in symmetric multiply connected domains
    Sakajo, Takashi
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) : 583 - 599
  • [50] A Control Problem with Passive Particles Driven by Point Vortices on the Sphere
    Balsa, Carlos
    Gama, Silvio
    ADVANCED RESEARCH IN TECHNOLOGIES, INFORMATION, INNOVATION AND SUSTAINABILITY, ARTIIS 2022, PT I, 2022, 1675 : 139 - 150