Relative equilibria of point vortices on the sphere

被引:65
|
作者
Lim, C [1 ]
Montaldi, J
Roberts, M
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Inst Nonlineaire Nice, UMR CNRS 6618, F-06560 Valbonne, France
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
point vortices; symmetry; first integrals; flow on a sphere;
D O I
10.1016/S0167-2789(00)00167-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of many different symmetry types of relative equilibria for systems of identical point vortices on a non-rotating sphere. The proofs use the rotational symmetry group SO(3) and the resulting conservation laws, the time-reversing reflectional symmetries in O(3), and the finite symmetry group of permutations of identical vortices. Results include both global existence theorems and local results on bifurcations from equilibria. A more detailed study is made of relative equilibria which consist of two parallel rings with n vortices in each rotating about a common axis. The paper ends with discussions of the bifurcation diagrams for systems of 3-6 identical vortices. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 135
页数:39
相关论文
共 50 条
  • [21] Recent progress in the relative equilibria of point vortices - In memoriam Hassan Aref
    Beelen, Peter
    Brons, Morten
    Krishnamurthy, Vikas S.
    Stremler, Mark A.
    IUTAM SYMPOSIUM ON TOPOLOGICAL FLUID DYNAMICS: THEORY AND APPLICATIONS, 2013, 7 : 3 - 12
  • [22] Clustered Equilibria of Point Vortices
    O'Neil, Kevin A.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 555 - 561
  • [23] ON POINT VORTICES ON ROTATING SPHERE
    KLYATSKIN, KV
    REZNIK, GM
    OKEANOLOGIYA, 1989, 29 (01): : 21 - 27
  • [24] Point vortices on hyperbolic sphere
    Hwang, Seungsu
    Kim, Sun-Chul
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 475 - 488
  • [25] Clustered equilibria of point vortices
    Kevin A. O’Neil
    Regular and Chaotic Dynamics, 2011, 16 : 555 - 561
  • [26] Point vortices on a rotating sphere
    Laurent-Polz, F
    REGULAR & CHAOTIC DYNAMICS, 2005, 10 (01): : 39 - 58
  • [27] RELATIVE EQUILIBRIA OF VORTICES IN 2 DIMENSIONS
    PALMORE, JI
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1982, 79 (02): : 716 - 718
  • [28] Stability of relative equilibria of three vortices
    Aref, Hassan
    PHYSICS OF FLUIDS, 2009, 21 (09)
  • [29] Point vortices exhibit asymmetric equilibria
    Hassan Aref
    Dmitri L. Vainchtein
    Nature, 1998, 392 : 769 - 770
  • [30] Equilibrium configurations of point vortices on a sphere
    K. A. O’Neil
    Regular and Chaotic Dynamics, 2008, 13 (1) : 1 - 8