Relative equilibria of point vortices on the sphere

被引:65
|
作者
Lim, C [1 ]
Montaldi, J
Roberts, M
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
[2] Inst Nonlineaire Nice, UMR CNRS 6618, F-06560 Valbonne, France
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
point vortices; symmetry; first integrals; flow on a sphere;
D O I
10.1016/S0167-2789(00)00167-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of many different symmetry types of relative equilibria for systems of identical point vortices on a non-rotating sphere. The proofs use the rotational symmetry group SO(3) and the resulting conservation laws, the time-reversing reflectional symmetries in O(3), and the finite symmetry group of permutations of identical vortices. Results include both global existence theorems and local results on bifurcations from equilibria. A more detailed study is made of relative equilibria which consist of two parallel rings with n vortices in each rotating about a common axis. The paper ends with discussions of the bifurcation diagrams for systems of 3-6 identical vortices. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 135
页数:39
相关论文
共 50 条