Pade approximants for finite time ruin probabilities

被引:2
|
作者
Tran, Dong Xuan [1 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appl, F-64013 Pau, France
关键词
Hyper-exponential; Bade approximants; Matrix exponential representation; Ruin probabilities; Classical; Cramer-Lundberg process; DISTRIBUTIONS;
D O I
10.1016/j.cam.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate Pade approximants of hyper-exponential to base on the first moments and the matrix-exponential representation of Pade approximated function. An explicit formula is given for the Laplace transform in the time to calculate finite time ruin probabilities of classical Cramer-Lundberg model. This formula generalizes the ultimate ruin probabilities formula of Asmussen and Rolski (1991) [12]. To illustrate this formula, several numerical examples with different values u are given. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 50 条
  • [41] ON SIMULTANEOUS PADE APPROXIMANTS
    NIKISIN, EM
    MATHEMATICS OF THE USSR-SBORNIK, 1980, 113 (04): : 409 - 425
  • [42] ON CONVERGENCE OF PADE APPROXIMANTS
    BEARDON, AF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 21 (02) : 344 - &
  • [43] PADE APPROXIMANTS IN PHYSICS
    BAKER, GA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (05): : 641 - 641
  • [44] PADE APPROXIMANTS ON A LATTICE
    JURKIEWICZ, J
    WOSIEK, J
    NUCLEAR PHYSICS B, 1978, 135 (03) : 416 - 428
  • [45] Generalized homogeneous multivariate matrix Pade-type approximants and pade approximants
    Zheng, Cheng-De
    Zhang, Huaguang
    Tian, Hong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (11) : 2160 - 2165
  • [46] Generalized multivariate rectangular matrix Pade-type approximants and Pade approximants
    Zheng, Chengde
    Li, Zhibin
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 7 - 12
  • [47] Some comparison results for finite-time ruin probabilities in the classical risk model
    Lefevre, Claude
    Trufin, Julien
    Zuyderhoff, Pierre
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 77 : 143 - 149
  • [48] On alternatives to the Picard-Lefevre formula for finite-time ruin probabilities.
    Rullière, D
    Loisel, S
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (02): : 424 - 424
  • [49] Finite Time Ruin Probabilities and Large Deviations for Generalized Compound Binomial Risk Models
    Yi Jun Hu
    Acta Mathematica Sinica, 2005, 21 : 1099 - 1106
  • [50] Apparent convergence of Pade approximants for the crossover line in finite density QCD
    Pasztor, Attila
    Szep, Zsolt
    Marko, Gergely
    PHYSICAL REVIEW D, 2021, 103 (03)