Pade approximants for finite time ruin probabilities

被引:2
|
作者
Tran, Dong Xuan [1 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appl, F-64013 Pau, France
关键词
Hyper-exponential; Bade approximants; Matrix exponential representation; Ruin probabilities; Classical; Cramer-Lundberg process; DISTRIBUTIONS;
D O I
10.1016/j.cam.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate Pade approximants of hyper-exponential to base on the first moments and the matrix-exponential representation of Pade approximated function. An explicit formula is given for the Laplace transform in the time to calculate finite time ruin probabilities of classical Cramer-Lundberg model. This formula generalizes the ultimate ruin probabilities formula of Asmussen and Rolski (1991) [12]. To illustrate this formula, several numerical examples with different values u are given. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 50 条
  • [21] Finite-time ruin probabilities using bivariate Laguerre series
    Cheung, Eric C. K.
    Lau, Hayden
    Willmot, Gordon E.
    Woo, Jae-Kyung
    SCANDINAVIAN ACTUARIAL JOURNAL, 2023, 2023 (02) : 153 - 190
  • [22] Erlangian approximation to finite time ruin probabilities in perturbed risk models
    Stanford, David A.
    Yu, Kaiqi
    Ren, Jiandong
    SCANDINAVIAN ACTUARIAL JOURNAL, 2011, (01) : 38 - 58
  • [23] On the evaluation of finite-time ruin probabilities in a dependent risk model
    Dimitrova, Dimitrina S.
    Kaishev, Vladimir K.
    Zhao, Shouqi
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 268 - 286
  • [24] UNIFORM ESTIMATE ON FINITE TIME RUIN PROBABILITIES WITH RANDOM INTEREST RATE
    明瑞星
    何晓霞
    胡亦钧
    刘娟
    ActaMathematicaScientia, 2010, 30 (03) : 688 - 700
  • [25] Recursive calculation of finite time ruin probabilities under interest force
    Cardoso, RMR
    Waters, HR
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01): : 159 - 159
  • [26] Sensitivity analysis and density estimation for finite-time ruin probabilities
    Loisel, Stephane
    Privault, Nicolas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (01) : 107 - 120
  • [27] TIME DOMAIN APPROXIMATION BY USE OF PADE APPROXIMANTS
    TEASDALE, RD
    PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1953, 41 (03): : 412 - 412
  • [28] Pade approximants
    Pindor, M
    HARMONIC ANALYSIS AND RATIONAL APPROXIMATION: THEIR ROLES IN SIGNALS, CONTROL AND DYNAMICAL SYSTEMS, 2006, 327 : 59 - 69
  • [29] Vector Pade-type approximants and vector Pade approximants
    Salam, A
    JOURNAL OF APPROXIMATION THEORY, 1999, 97 (01) : 92 - 112
  • [30] Explicit finite-time and infinite-time ruin probabilities in the continuous case
    De Vylder, FE
    Goovaerts, MJ
    INSURANCE MATHEMATICS & ECONOMICS, 1999, 24 (03): : 155 - 172