Pade approximants for finite time ruin probabilities

被引:2
|
作者
Tran, Dong Xuan [1 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appl, F-64013 Pau, France
关键词
Hyper-exponential; Bade approximants; Matrix exponential representation; Ruin probabilities; Classical; Cramer-Lundberg process; DISTRIBUTIONS;
D O I
10.1016/j.cam.2014.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate Pade approximants of hyper-exponential to base on the first moments and the matrix-exponential representation of Pade approximated function. An explicit formula is given for the Laplace transform in the time to calculate finite time ruin probabilities of classical Cramer-Lundberg model. This formula generalizes the ultimate ruin probabilities formula of Asmussen and Rolski (1991) [12]. To illustrate this formula, several numerical examples with different values u are given. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 137
页数:8
相关论文
共 50 条
  • [1] Bayesian estimation of finite time ruin probabilities
    Concepcion Ausin, M.
    Wiper, Michael P.
    Lillo, Rosa E.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (06) : 787 - 805
  • [2] On moments based Pade approximations of ruin probabilities
    Avram, F.
    Chedom, D. F.
    Horvath, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (10) : 3215 - 3228
  • [3] FINITE CONFINEMENT FROM PADE APPROXIMANTS
    WOSIEK, J
    ACTA PHYSICA POLONICA B, 1978, 9 (03): : 283 - 288
  • [4] Bayesian Dividend Optimization and Finite Time Ruin Probabilities
    Leobacher, Gunther
    Szoelgyenyi, Michaela
    Thonhauser, Stefan
    STOCHASTIC MODELS, 2014, 30 (02) : 216 - 249
  • [5] Multirisks model and finite-time ruin probabilities
    Picard, P
    Lefèvre, C
    Coulibaly, I
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2003, 5 (03) : 337 - 353
  • [6] RECURSIVE CALCULATION OF FINITE-TIME RUIN PROBABILITIES
    DEVYLDER, F
    GOOVAERTS, MJ
    INSURANCE MATHEMATICS & ECONOMICS, 1988, 7 (01): : 1 - 7
  • [7] Multirisks Model and Finite-Time Ruin Probabilities
    Philippe Picard
    Claude Lefèvre
    Ibrahim Coulibaly
    Methodology And Computing In Applied Probability, 2003, 5 : 337 - 353
  • [8] Finite time ruin probabilities with one Laplace inversion
    Avram, F
    Usabel, M
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03): : 371 - 377
  • [9] Finite and infinite time ruin probabilities in a stochastic economic environment
    Nyrhinen, H
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 92 (02) : 265 - 285
  • [10] On finite-time ruin probabilities for classical risk models
    Lefevre, Claude
    Loisel, Stephane
    SCANDINAVIAN ACTUARIAL JOURNAL, 2008, (01) : 41 - 60