Algorithmic Computation of Polynomial Amoebas

被引:8
|
作者
Bogdanov, D. V. [1 ]
Kytmanov, A. A. [2 ]
Sadykov, T. M. [1 ]
机构
[1] Plekhanov Russian Univ, Stremyanny 36, Moscow 125993, Russia
[2] Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia
关键词
Amoebas; Newton polytope; Optimal algebraic hypersurface; The contour of an amoeba; Hypergeometric functions; MELLIN SYSTEM;
D O I
10.1007/978-3-319-45641-6_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present algorithms for computation and visualization of polynomial amoebas, their contours, compactified amoebas and sections of three-dimensional amoebas by two-dimensional planes. We also provide a method and an algorithm for the computation of polynomials whose amoebas exhibit the most complicated topology among all polynomials with a fixed Newton polytope. The presented algorithms are implemented in computer algebra systems Matlab 8 and Mathematica 9.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [41] Algorithmic Issues in Energy-Efficient Computation
    Bampis, Evripidis
    DISCRETE OPTIMIZATION AND OPERATIONS RESEARCH, DOOR 2016, 2016, 9869 : 3 - 14
  • [42] Intelligent amoebas
    不详
    JOURNAL OF BIOPHOTONICS, 2008, 1 (01) : 7 - 7
  • [43] On the computation of the minimal polynomial of a two-variable polynomial matrix
    Tzekis, R
    Karampetakis, NP
    FOURTH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL SYSTEMS - NDS 2005, 2005, : 83 - 89
  • [44] An algorithmic approach to the Polydegree Conjecture for plane polynomial automorphisms
    Lewis, Drew
    Perry, Kaitlyn
    Straub, Armin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (12) : 5346 - 5359
  • [45] Algorithmic Views of Vectorized Polynomial Multipliers - NTRU Prime
    Hwang, Vincent
    Liu, Chi-Ting
    Yang, Bo-Yin
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, ACNS 2024, PT II, 2024, 14584 : 24 - 46
  • [46] Algorithmic search for flexibility using resultants of polynomial systems
    Lewis, Robert H.
    Coutsias, Evangelos A.
    AUTOMATED DEDUCTION IN GEOMETRY, 2007, 4869 : 68 - +
  • [47] DIAGNOSIS OF CONTROL DEVICES BY POLYNOMIAL INTERPRETATION OF ALGORITHMIC DIAGRAMS
    BALAKIN, VN
    BARASHENKOV, VV
    MARKIN, AS
    ORLOV, VY
    AUTOMATION AND REMOTE CONTROL, 1990, 51 (02) : 255 - 263
  • [48] Lagrange Multivariate Polynomial Interpolation: A Random Algorithmic Approach
    Essanhaji, A.
    Errachid, M.
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022
  • [49] Improved polynomial matrix determinant computation
    Henrion, Didier
    Sebek, Michael
    IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, 46 (10): : 1307 - 1308
  • [50] Reachability computation for polynomial dynamical systems
    Dreossi, Tommaso
    Dang, Thao
    Piazza, Carla
    FORMAL METHODS IN SYSTEM DESIGN, 2017, 50 (01) : 1 - 38