Algorithmic Computation of Polynomial Amoebas

被引:8
|
作者
Bogdanov, D. V. [1 ]
Kytmanov, A. A. [2 ]
Sadykov, T. M. [1 ]
机构
[1] Plekhanov Russian Univ, Stremyanny 36, Moscow 125993, Russia
[2] Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia
关键词
Amoebas; Newton polytope; Optimal algebraic hypersurface; The contour of an amoeba; Hypergeometric functions; MELLIN SYSTEM;
D O I
10.1007/978-3-319-45641-6_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present algorithms for computation and visualization of polynomial amoebas, their contours, compactified amoebas and sections of three-dimensional amoebas by two-dimensional planes. We also provide a method and an algorithm for the computation of polynomials whose amoebas exhibit the most complicated topology among all polynomials with a fixed Newton polytope. The presented algorithms are implemented in computer algebra systems Matlab 8 and Mathematica 9.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [31] The computation of multiple roots of a polynomial
    Winkler, Joab R.
    Lao, Xin
    Hasan, Madina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (14) : 3478 - 3497
  • [32] ON THE COMPLEXITY OF GENUINELY POLYNOMIAL COMPUTATION
    KARPINSKI, M
    DERHEIDE, FMA
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 452 : 362 - 368
  • [33] A Nullstellensatz for amoebas
    Purbhoo, Kevin
    DUKE MATHEMATICAL JOURNAL, 2008, 141 (03) : 407 - 445
  • [34] An algorithmic model for real-time computation
    Akl, SG
    SCCC 2003: XXIII INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY, PROCEEDINGS, 2003, : 31 - 38
  • [35] Computation of multiple Lie derivatives by algorithmic differentiation
    Roebenack, Klaus
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (02) : 454 - 464
  • [36] Algorithmic control over dynamical computation systems
    Vesper, Gregory
    Khokhlov, Alexei
    PHYSICA SCRIPTA, 2010, T142
  • [37] A Revisiting Algorithmic Lateral Inhibition and Accumulative Computation
    Fernandez-Caballero, Antonio
    Lopez, Maria T.
    Fernandez, Miguel A.
    Lopez-Valles, Jose M.
    METHODS AND MODELS IN ARTIFICIAL AND NATURAL COMPUTATION, PT I: A HOMAGE TO PROFESSOR MIRA'S SCIENTIFIC LEGACY, 2009, 5601 : 57 - +
  • [38] The Algorithmic Level Is the Bridge Between Computation and Brain
    Love, Bradley C.
    TOPICS IN COGNITIVE SCIENCE, 2015, 7 (02) : 230 - 242
  • [39] Algorithmic transforms for efficient energy scalable computation
    Sinha, A
    Wang, A
    Chandrakasan, AP
    ISLPED '00: PROCEEDINGS OF THE 2000 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, 2000, : 31 - 36
  • [40] Algorithmic rationality: Game theory with costly computation
    Halpern, Joseph Y.
    Pass, Rafael
    JOURNAL OF ECONOMIC THEORY, 2015, 156 : 246 - 268