Optimization of the clusters number of An improved fuzzy C-means clustering algorithm

被引:0
|
作者
Xu Yejun [1 ]
机构
[1] Suzhou Ind Pk Inst Serv Outsourcing, Suzhou 215123, Peoples R China
关键词
clustering; hierarchical clustering; fuzzy clustering; number of clusters; validity function;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cluster analysis is an unsupervised most important research topics in the field of pattern recognition. Fuzzy clustering from the sample to the category of uncertainty description, it is possible to more objectively reflect the real world. Traditional fuzzy clustering algorithm can not achieve the optimal allocation of the number of clusters is calculated automatically. In this paper, by adopting the idea of hierarchical clustering, one can automatically and efficiently determine the optimal number of clusters of new adaptive fuzzy c-means clustering algorithm-A-FCM algorithm. Numerical experiments show that the other through a variety of validity function to determine the number of clusters of adaptive fuzzy clustering algorithm, the better the performance of the method.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 50 条
  • [31] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232
  • [32] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515
  • [33] The global Fuzzy C-Means clustering algorithm
    Wang, Weina
    Zhang, Yunjie
    Li, Yi
    Zhang, Xiaona
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3604 - +
  • [34] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [35] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [36] Locating clusters in noisy data: A genetic fuzzy c-means clustering algorithm
    Egan, MA
    1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 178 - 182
  • [37] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698
  • [38] An improved fuzzy C-means clustering algorithm using Euclidean distance function
    Zhu, Xingchen
    Wu, Xiaohong
    Wu, Bin
    Zhou, Haoxiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9847 - 9862
  • [39] Improved Fuzzy C-Means Clustering Algorithm for Automatic Detection of Lung Nodules
    Liao, Fan
    Zhao, Chunxia
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 464 - 469
  • [40] Image Segmentation Algorithm Basel on Improved Weighted Fuzzy C-means Clustering
    Xin, Jie
    Sha, Xiuyan
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 734 - +