Optimization of the clusters number of An improved fuzzy C-means clustering algorithm

被引:0
|
作者
Xu Yejun [1 ]
机构
[1] Suzhou Ind Pk Inst Serv Outsourcing, Suzhou 215123, Peoples R China
关键词
clustering; hierarchical clustering; fuzzy clustering; number of clusters; validity function;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cluster analysis is an unsupervised most important research topics in the field of pattern recognition. Fuzzy clustering from the sample to the category of uncertainty description, it is possible to more objectively reflect the real world. Traditional fuzzy clustering algorithm can not achieve the optimal allocation of the number of clusters is calculated automatically. In this paper, by adopting the idea of hierarchical clustering, one can automatically and efficiently determine the optimal number of clusters of new adaptive fuzzy c-means clustering algorithm-A-FCM algorithm. Numerical experiments show that the other through a variety of validity function to determine the number of clusters of adaptive fuzzy clustering algorithm, the better the performance of the method.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 50 条
  • [21] An improved C-means clustering algorithm
    Pi, Dechang
    Xian, Chuhua
    Qin, Xiaolin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2008, 23 (01): : 43 - 49
  • [22] Fuzzy C-Means Algorithm Automatically Determining Optimal Number of Clusters
    Xing, Ruikang
    Li, Chenghai
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 767 - 780
  • [23] Improved fuzzy C-means clustering algorithm based on fuzzy particle swarm optimization for solving data clustering problems
    Zhang, Hongkang
    Huang, Shao-Lun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 233 : 311 - 329
  • [24] Improved Probabilistic Intuitionistic Fuzzy c-Means Clustering Algorithm: Improved PIFCM
    Varshney, Ayush K.
    Lohani, Q. M. Danish
    Muhuri, Pranab K.
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [25] A fuzzy c-means clustering algorithm based on improved quantum genetic algorithm
    Ye, An-Xin
    Jin, Yong-Xian
    International Journal of Database Theory and Application, 2016, 9 (01): : 227 - 236
  • [26] An Improved Fuzzy C-Means Clustering Algorithm and Application in Meteorological Data
    Li, Hongfei
    Wang, Fuling
    Zheng, Shijue
    Gao, Li
    ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, PTS 1-2, 2011, 181-182 : 545 - 550
  • [27] Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation
    Forouzanfar, Mohamad
    Forghani, Nosratallah
    Teshnehlab, Mohammad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (02) : 160 - 168
  • [28] An Improved Fuzzy C-means Clustering Algorithm Based on Simulated Annealing
    Liu, Peiyu
    Duan, Linshan
    Chi, Xuezhi
    Zhu, Zhenfang
    2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 39 - 43
  • [29] An Improved Generalized Fuzzy C-Means Clustering Algorithm Based on GA
    Ma, Wenping
    Ge, Xiaohua
    Jiao, Licheng
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 599 - 606
  • [30] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530