共 50 条
Nonexistence for complete Kahler-Einstein metrics on some noncompact manifolds
被引:1
|作者:
Gao, Peng
[1
]
Yau, Shing-Tung
[1
]
Zhou, Wubin
[2
]
机构:
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金:
美国国家科学基金会;
中国博士后科学基金;
关键词:
RICCI CURVATURE;
EQUATION;
D O I:
10.1007/s00208-016-1486-y
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let M be a compact Kahler manifold and N be a subvariety with codimension greater than or equal to 2. We show that there are no complete Kahler-Einstein metrics on . As an application, let E be an exceptional divisor of M. Then cannot admit any complete Kahler-Einstein metric if blow-down of E is a complex variety with only canonical or terminal singularities. A similar result is shown for pairs.
引用
收藏
页码:1271 / 1282
页数:12
相关论文