Analytical expressions for water-to-air stopping-power ratios relevant for accurate dosimetry in particle therapy

被引:22
|
作者
Luhr, Armin [1 ,2 ]
Hansen, David C. [2 ]
Jaekel, Oliver [3 ,4 ]
Sobolevsky, Nikolai [5 ]
Bassler, Niels [1 ,2 ]
机构
[1] Aarhus Univ Hosp, Dept Expt Clin Oncol, DK-8000 Aarhus, Denmark
[2] Univ Aarhus, Dept Phys & Astron, Aarhus, Denmark
[3] German Canc Res Ctr, Dept Med Phys Radiat Oncol, Heidelberg, Germany
[4] Univ Heidelberg Hosp, Heidelberg Ion Beam Therapy Ctr HIT, Heidelberg, Germany
[5] Russian Acad Sci, Inst Nucl Res, Dept Neutron Res, Moscow 117312, Russia
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2011年 / 56卷 / 08期
关键词
HEAVY-ION RADIOTHERAPY; MONTE-CARLO; RADIATION; TRANSPORT; SOLIDS; SHIELD; CODE;
D O I
10.1088/0031-9155/56/8/012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In particle therapy, knowledge of the stopping-power ratio (STPR) of the ion beam for water and air is necessary for accurate ionization chamber dosimetry. Earlier work has investigated the STPR for pristine carbon ion beams, but here we expand the calculations to a range of ions (1 <= z <= 18) as well as spread-out Bragg peaks (SOBPs) and provide a theoretical in-depth study with a special focus on the parameter regime relevant for particle therapy. The Monte Carlo transport code SHIELD-HIT is used to calculate complete particle-fluence spectra which are required for determining the STPR according to the recommendations of the International Atomic Energy Agency. The STPR at a depth d depends primarily on the average energy of the primary ions at d rather than on their charge z or absolute position in the medium. However, STPRs for different sets of stopping-power data for water and air recommended by the International Commission on Radiation Units and Measurements are compared, including also the recently revised data for water, yielding deviations up to 2% in the plateau region. In comparison, the influence of the secondary particle spectra on the STPR is about two orders of magnitude smaller in the whole region up till the practical range. The gained insights enable us to propose simple analytical expressions for the STPR for both pristine and SOBPs as a function of penetration depth depending parametrically on the practical range.
引用
收藏
页码:2515 / 2533
页数:19
相关论文
共 35 条
  • [21] Experimental assessment of inter-centre variation in stopping-power and range prediction in particle therapy
    Peters, Nils
    Wohlfahrt, Patrick
    Dahlgren, Christina, V
    de Marzi, Ludovic
    Ellerbrock, Malte
    Fracchiolla, Francesco
    Free, Jeffrey
    Goma, Carles
    Gora, Joanna
    Jensen, Maria F.
    Kajdrowicz, Tomasz
    Mackay, Ranald
    Molinelli, Silvia
    Rinaldi, Ilaria
    Rompokos, Vasilis
    Siewert, Dorota
    van der Tol, Pieternel
    Vermeren, Xavier
    Nystrom, Hakan
    Lomax, Antony
    Richter, Christian
    RADIOTHERAPY AND ONCOLOGY, 2021, 163 : 7 - 13
  • [22] Comments on 'Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams'
    Seuntjens, J
    Verhaegen, F
    PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (21): : L43 - L45
  • [23] Reply to 'Comments on 'Ionization chamber dosimetry of small photon fields:: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams"
    Andreo, P
    Sánchez-Doblado, F
    Capote, R
    PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (21): : L46 - L48
  • [24] Particle therapy: Assessing clinical benefit of direct stopping-power prediction from dual-energy CT
    Peters, N.
    Wohlfahrt, P.
    Hofmann, C.
    Moehler, C.
    Makocki, S.
    Richter, C.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S389 - S390
  • [25] A 3D model to calculate water-to-air stopping power ratio in therapeutic carbon ion fields
    Sanchez-Parcerisa, D.
    Gemmel, A.
    Parodi, K.
    Rietzel, E.
    JOURNAL OF RADIATION RESEARCH, 2013, 54 : 143 - 146
  • [26] Influence of the delta ray production threshold on water-to-air stopping power ratio calculations for carbon ion beam radiotherapy
    Sanchez-Parcerisa, D.
    Gemmel, A.
    Jaekel, O.
    Rietzel, E.
    Parodi, K.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01): : 145 - 158
  • [27] Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV
    Bailey, M.
    Shipley, D. R.
    Manning, J. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (03): : 1087 - 1105
  • [28] Variations of energy spectra and water-to-material stopping-power ratios in three-dimensional conformal and IMRT photon fields
    Jang, S.
    Liu, H.
    Siebers, J.
    Mohan, R.
    MEDICAL PHYSICS, 2006, 33 (06) : 1985 - 1985
  • [29] PHYSICAL STATE EFFECTS ON THE MEAN EXCITATION-ENERGY OF WATER AS DETERMINED FROM ALPHA-PARTICLE STOPPING-POWER MEASUREMENTS
    PORTER, LE
    THWAITES, DI
    PHYSICAL REVIEW A, 1982, 25 (06): : 3407 - 3410
  • [30] Inter-centre variability of CT-based stopping-power prediction in particle therapy: Survey-based evaluation
    Taasti, Vicki T.
    Baeumer, Christian
    Dahlgren, Christina, V
    Deisher, Amanda J.
    Ellerbrock, Malte
    Free, Jeffrey
    Gora, Joanna
    Kozera, Anna
    Lomax, Antony J.
    De Marzi, Ludovic
    Molinelli, Silvia
    Teo, Boon-Keng Kevin
    Wohlfahrt, Patrick
    Petersen, Jorgen B. B.
    Muren, Ludvig P.
    Hansen, David C.
    Richter, Christian
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2018, 6 : 25 - 30