ON THE FOCUSING GENERALIZED HARTREE EQUATION

被引:1
|
作者
Arora, Anudeep Kumar [1 ]
Roudenko, Svetlana [2 ]
Yang, Kai [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 61801 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL USA
来源
关键词
Hartree equation; Choquard-Pekar equation; convolution nonlinearity; global well-posedness; blow-up; dynamic rescaling;
D O I
10.5206/mase/10855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H-1 and H-s settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L-2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L-2 -critical setting.
引用
收藏
页码:383 / 402
页数:20
相关论文
共 50 条
  • [31] Scattering theory for the Dirac equation of Hartree type and the semirelativistic Hartree equation
    Nakamura, Makoto
    Tsutaya, Kimitoshi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (08) : 3531 - 3542
  • [32] Scattering versus blow-up for the focusing L2 supercritical Hartree equation
    Yanfang Gao
    Zhiyong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 179 - 202
  • [33] On a logarithmic Hartree equation
    Bernini, Federico
    Mugnai, Dimitri
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 850 - 865
  • [34] Intermittency in generalized NLS equation with focusing six-wave interactions
    Agafontsev, D. S.
    Zakharov, V. E.
    PHYSICS LETTERS A, 2015, 379 (40-41) : 2586 - 2590
  • [35] INSTABILITY OF THE SOLITON FOR THE FOCUSING, MASS-CRITICAL GENERALIZED KDV EQUATION
    Dodson, Benjamin
    Gavrus, Cristian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (04) : 1767 - 1799
  • [36] DECAY IN ENERGY SPACE FOR THE SOLUTIONS OF GENERALIZED SCHRODINGER-HARTREE EQUATION PERTURBED BY A POTENTIAL
    Nikolova, Elena
    Tarulli, Mirko
    Venkov, George
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (11): : 1559 - 1572
  • [37] ON THE BLOW-UP PHENOMENON FOR THE MASS-CRITICAL FOCUSING HARTREE EQUATION IN R4
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    COLLOQUIUM MATHEMATICUM, 2010, 119 (01) : 23 - 50
  • [38] THE GENERALIZED METHOD OF HARTREE AND FOCK
    VIZBARAITE, JI
    STROTSKITE, TD
    IUTSIS, AP
    DOKLADY AKADEMII NAUK SSSR, 1960, 135 (06): : 1358 - 1360
  • [39] ON THE BLOWUP FOR THE GENERALIZED HARTREE EQUATIONS
    Zhang, Mao
    Zhang, Jian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 330 - 341
  • [40] On the inter-critical inhomogeneous generalized Hartree equation (vol 11, pg 557, 2022)
    Saanouni, Tarek
    Alharbi, Talal
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (01) : 197 - 197