ON THE FOCUSING GENERALIZED HARTREE EQUATION

被引:1
|
作者
Arora, Anudeep Kumar [1 ]
Roudenko, Svetlana [2 ]
Yang, Kai [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 61801 USA
[2] Florida Int Univ, Dept Math & Stat, Miami, FL USA
来源
关键词
Hartree equation; Choquard-Pekar equation; convolution nonlinearity; global well-posedness; blow-up; dynamic rescaling;
D O I
10.5206/mase/10855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H-1 and H-s settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L-2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L-2 -critical setting.
引用
收藏
页码:383 / 402
页数:20
相关论文
共 50 条
  • [21] Energy thresholds of blow-up for the Hartree equation with a focusing subcritical perturbation
    Tian, Shuai
    Yang, Ying
    Zhou, Rui
    Zhu, Shihui
    STUDIES IN APPLIED MATHEMATICS, 2021, 146 (03) : 658 - 676
  • [22] STABILITY OF SOLITARY WAVES FOR THE GENERALIZED KLEIN-GORDON-HARTREE EQUATION
    Kostadinov, Boyan
    Tarulli, Mirko
    Venkov, George
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (09): : 1177 - 1186
  • [23] Instability of Solitary Waves for the Generalized Klein-Gordon-Hartree Equation
    Kostadinov, Boyan
    Tarulli, Mirko
    Venkov, George
    PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [24] On the classification of minimal mass blowup solutions of the focusing mass-critical Hartree equation
    Li, Dong
    Zhang, Xiaoyi
    ADVANCES IN MATHEMATICS, 2009, 220 (04) : 1171 - 1192
  • [25] Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation
    Belchior, P.
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    ASYMPTOTIC ANALYSIS, 2020, 118 (04) : 269 - 295
  • [26] Well-posedness and blow-up properties for the generalized Hartree equation
    Arora, Anudeep Kumar
    Roudenko, Svetlana
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2020, 17 (04) : 727 - 763
  • [27] Dynamics of radial threshold solutions for generalized energy-critical Hartree equation
    Li, Xuemei
    Liu, Chenxi
    Tang, Xingdong
    Xu, Guixiang
    FORUM MATHEMATICUM, 2025,
  • [28] SPIN-DEPENDENT POTENTIAL FUNCTIONS IN GENERALIZED HARTREE-FOCK EQUATION
    BAILYN, M
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 136 (5A): : 1321 - &
  • [29] Well-posedness in weighted spaces for the generalized Hartree equation with p < 2
    Arora, Anudeep K.
    Riano, Oscar
    Roudenko, Svetlana
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (09)
  • [30] Scattering versus blow-up for the focusing L2 supercritical Hartree equation
    Gao, Yanfang
    Wang, Zhiyong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 179 - 202